Abstract:3D multi-person motion prediction is a challenging task that involves modeling individual behaviors and interactions between people. Despite the emergence of approaches for this task, comparing them is difficult due to the lack of standardized training settings and benchmark datasets. In this paper, we introduce the Multi-Person Interaction Motion (MI-Motion) Dataset, which includes skeleton sequences of multiple individuals collected by motion capture systems and refined and synthesized using a game engine. The dataset contains 167k frames of interacting people's skeleton poses and is categorized into 5 different activity scenes. To facilitate research in multi-person motion prediction, we also provide benchmarks to evaluate the performance of prediction methods in three settings: short-term, long-term, and ultra-long-term prediction. Additionally, we introduce a novel baseline approach that leverages graph and temporal convolutional networks, which has demonstrated competitive results in multi-person motion prediction. We believe that the proposed MI-Motion benchmark dataset and baseline will facilitate future research in this area, ultimately leading to better understanding and modeling of multi-person interactions.
Abstract:In recent years, the task of weakly supervised audio-visual violence detection has gained considerable attention. The goal of this task is to identify violent segments within multimodal data based on video-level labels. Despite advances in this field, traditional Euclidean neural networks, which have been used in prior research, encounter difficulties in capturing highly discriminative representations due to limitations of the feature space. To overcome this, we propose HyperVD, a novel framework that learns snippet embeddings in hyperbolic space to improve model discrimination. Our framework comprises a detour fusion module for multimodal fusion, effectively alleviating modality inconsistency between audio and visual signals. Additionally, we contribute two branches of fully hyperbolic graph convolutional networks that excavate feature similarities and temporal relationships among snippets in hyperbolic space. By learning snippet representations in this space, the framework effectively learns semantic discrepancies between violent and normal events. Extensive experiments on the XD-Violence benchmark demonstrate that our method outperforms state-of-the-art methods by a sizable margin.