Abstract:In this paper, an image recognition algorithm based on the combination of deep learning and generative adversarial network (GAN) is studied, and compared with traditional image recognition methods. The purpose of this study is to evaluate the advantages and application prospects of deep learning technology, especially GAN, in the field of image recognition. Firstly, this paper reviews the basic principles and techniques of traditional image recognition methods, including the classical algorithms based on feature extraction such as SIFT, HOG and their combination with support vector machine (SVM), random forest, and other classifiers. Then, the working principle, network structure, and unique advantages of GAN in image generation and recognition are introduced. In order to verify the effectiveness of GAN in image recognition, a series of experiments are designed and carried out using multiple public image data sets for training and testing. The experimental results show that compared with traditional methods, GAN has excellent performance in processing complex images, recognition accuracy, and anti-noise ability. Specifically, Gans are better able to capture high-dimensional features and details of images, significantly improving recognition performance. In addition, Gans shows unique advantages in dealing with image noise, partial missing information, and generating high-quality images.
Abstract:The stock market's ascent typically mirrors the flourishing state of the economy, whereas its decline is often an indicator of an economic downturn. Therefore, for a long time, significant correlation elements for predicting trends in financial stock markets have been widely discussed, and people are becoming increasingly interested in the task of financial text mining. The inherent instability of stock prices makes them acutely responsive to fluctuations within the financial markets. In this article, we use deep learning networks, based on the history of stock prices and articles of financial, business, technical news that introduce market information to predict stock prices. We illustrate the enhancement of predictive precision by integrating weighted news categories into the forecasting model. We developed a pre-trained NLP model known as FinBERT, designed to discern the sentiments within financial texts. Subsequently, we advanced this model by incorporating the sophisticated Long Short Term Memory (LSTM) architecture, thus constructing the innovative FinBERT-LSTM model. This model utilizes news categories related to the stock market structure hierarchy, namely market, industry, and stock related news categories, combined with the stock market's stock price situation in the previous week for prediction. We selected NASDAQ-100 index stock data and trained the model on Benzinga news articles, and utilized Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Accuracy as the key metrics for the assessment and comparative analysis of the model's performance. The results indicate that FinBERT-LSTM performs the best, followed by LSTM, and DNN model ranks third in terms of effectiveness.
Abstract:Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship. With the advent of the multimedia information age, image, and text data show explosive growth, and how to accurately realize the efficient and accurate semantic correspondence between them has become the core issue of common concern in academia and industry. In this study, we delve into the limitations of current multimodal deep learning models in processing image-text pairing tasks. Therefore, we innovatively design an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding. By introducing a novel cross-modal attention mechanism and hierarchical feature fusion strategy, the model achieves deep fusion and two-way interaction between image and text feature space. In addition, we also optimize the training objectives and loss functions to ensure that the model can better map the potential association structure between images and text during the learning process. Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets. In addition, the new model also shows excellent generalization and robustness on large and diverse open scenario datasets and can maintain high matching performance even in the face of previously unseen complex situations.
Abstract:This project investigates the human multi-modal behavior identification algorithm utilizing deep neural networks. According to the characteristics of different modal information, different deep neural networks are used to adapt to different modal video information. Through the integration of various deep neural networks, the algorithm successfully identifies behaviors across multiple modalities. In this project, multiple cameras developed by Microsoft Kinect were used to collect corresponding bone point data based on acquiring conventional images. In this way, the motion features in the image can be extracted. Ultimately, the behavioral characteristics discerned through both approaches are synthesized to facilitate the precise identification and categorization of behaviors. The performance of the suggested algorithm was evaluated using the MSR3D data set. The findings from these experiments indicate that the accuracy in recognizing behaviors remains consistently high, suggesting that the algorithm is reliable in various scenarios. Additionally, the tests demonstrate that the algorithm substantially enhances the accuracy of detecting pedestrian behaviors in video footage.