Abstract:In this paper, an image recognition algorithm based on the combination of deep learning and generative adversarial network (GAN) is studied, and compared with traditional image recognition methods. The purpose of this study is to evaluate the advantages and application prospects of deep learning technology, especially GAN, in the field of image recognition. Firstly, this paper reviews the basic principles and techniques of traditional image recognition methods, including the classical algorithms based on feature extraction such as SIFT, HOG and their combination with support vector machine (SVM), random forest, and other classifiers. Then, the working principle, network structure, and unique advantages of GAN in image generation and recognition are introduced. In order to verify the effectiveness of GAN in image recognition, a series of experiments are designed and carried out using multiple public image data sets for training and testing. The experimental results show that compared with traditional methods, GAN has excellent performance in processing complex images, recognition accuracy, and anti-noise ability. Specifically, Gans are better able to capture high-dimensional features and details of images, significantly improving recognition performance. In addition, Gans shows unique advantages in dealing with image noise, partial missing information, and generating high-quality images.
Abstract:Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship. With the advent of the multimedia information age, image, and text data show explosive growth, and how to accurately realize the efficient and accurate semantic correspondence between them has become the core issue of common concern in academia and industry. In this study, we delve into the limitations of current multimodal deep learning models in processing image-text pairing tasks. Therefore, we innovatively design an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding. By introducing a novel cross-modal attention mechanism and hierarchical feature fusion strategy, the model achieves deep fusion and two-way interaction between image and text feature space. In addition, we also optimize the training objectives and loss functions to ensure that the model can better map the potential association structure between images and text during the learning process. Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets. In addition, the new model also shows excellent generalization and robustness on large and diverse open scenario datasets and can maintain high matching performance even in the face of previously unseen complex situations.