Abstract:Clinician skepticism toward opaque AI hinders adoption in high-stakes healthcare. We present AICare, an interactive and interpretable AI copilot for collaborative clinical decision-making. By analyzing longitudinal electronic health records, AICare grounds dynamic risk predictions in scrutable visualizations and LLM-driven diagnostic recommendations. Through a within-subjects counterbalanced study with 16 clinicians across nephrology and obstetrics, we comprehensively evaluated AICare using objective measures (task completion time and error rate), subjective assessments (NASA-TLX, SUS, and confidence ratings), and semi-structured interviews. Our findings indicate AICare's reduced cognitive workload. Beyond performance metrics, qualitative analysis reveals that trust is actively constructed through verification, with interaction strategies diverging by expertise: junior clinicians used the system as cognitive scaffolding to structure their analysis, while experts engaged in adversarial verification to challenge the AI's logic. This work offers design implications for creating AI systems that function as transparent partners, accommodating diverse reasoning styles to augment rather than replace clinical judgment.
Abstract:Foreground-conditioned inpainting aims to seamlessly fill the background region of an image by utilizing the provided foreground subject and a text description. While existing T2I-based image inpainting methods can be applied to this task, they suffer from issues of subject shape expansion, distortion, or impaired ability to align with the text description, resulting in inconsistencies between the visual elements and the text description. To address these challenges, we propose Pinco, a plug-and-play foreground-conditioned inpainting adapter that generates high-quality backgrounds with good text alignment while effectively preserving the shape of the foreground subject. Firstly, we design a Self-Consistent Adapter that integrates the foreground subject features into the layout-related self-attention layer, which helps to alleviate conflicts between the text and subject features by ensuring that the model can effectively consider the foreground subject's characteristics while processing the overall image layout. Secondly, we design a Decoupled Image Feature Extraction method that employs distinct architectures to extract semantic and shape features separately, significantly improving subject feature extraction and ensuring high-quality preservation of the subject's shape. Thirdly, to ensure precise utilization of the extracted features and to focus attention on the subject region, we introduce a Shared Positional Embedding Anchor, greatly improving the model's understanding of subject features and boosting training efficiency. Extensive experiments demonstrate that our method achieves superior performance and efficiency in foreground-conditioned inpainting.