Abstract:In open-domain Question Answering (QA), dense retrieval is crucial for finding relevant passages for answer generation. Typically, contrastive learning is used to train a retrieval model that maps passages and queries to the same semantic space. The objective is to make similar ones closer and dissimilar ones further apart. However, training such a system is challenging due to the false negative issue, where relevant passages may be missed during data annotation. Hard negative sampling, which is commonly used to improve contrastive learning, can introduce more noise in training. This is because hard negatives are those closer to a given query, and thus more likely to be false negatives. To address this issue, we propose a novel contrastive confidence regularizer for Noise Contrastive Estimation (NCE) loss, a commonly used loss for dense retrieval. Our analysis shows that the regularizer helps dense retrieval models be more robust against false negatives with a theoretical guarantee. Additionally, we propose a model-agnostic method to filter out noisy negative passages in the dataset, improving any downstream dense retrieval models. Through experiments on three datasets, we demonstrate that our method achieves better retrieval performance in comparison to existing state-of-the-art dense retrieval systems.
Abstract:In Conversational Recommendation Systems (CRS), the central question is how the conversational agent can naturally ask for user preferences and provide suitable recommendations. Existing works mainly follow the hierarchical architecture, where a higher policy decides whether to invoke the conversation module (to ask questions) or the recommendation module (to make recommendations). This architecture prevents these two components from fully interacting with each other. In contrast, this paper proposes a novel architecture, the long short-term feedback architecture, to connect these two essential components in CRS. Specifically, the recommendation predicts the long-term recommendation target based on the conversational context and the user history. Driven by the targeted recommendation, the conversational model predicts the next topic or attribute to verify if the user preference matches the target. The balance feedback loop continues until the short-term planner output matches the long-term planner output, that is when the system should make the recommendation.
Abstract:Multi-document grounded dialogue systems (DGDS) belong to a class of conversational agents that answer users' requests by finding supporting knowledge from a collection of documents. Most previous studies aim to improve the knowledge retrieval model or propose more effective ways to incorporate external knowledge into a parametric generation model. These methods, however, focus on retrieving knowledge from mono-granularity language units (e.g. passages, sentences, or spans in documents), which is not enough to effectively and efficiently capture precise knowledge in long documents. This paper proposes Re3G, which aims to optimize both coarse-grained knowledge retrieval and fine-grained knowledge extraction in a unified framework. Specifically, the former efficiently finds relevant passages in a retrieval-and-reranking process, whereas the latter effectively extracts finer-grain spans within those passages to incorporate into a parametric answer generation model (BART, T5). Experiments on DialDoc Shared Task demonstrate the effectiveness of our method.