Abstract:The increasing demand for mental health services has led to the rise of AI-driven mental health chatbots, though challenges related to privacy, data collection, and expertise persist. Motivational Interviewing (MI) is gaining attention as a theoretical basis for boosting expertise in the development of these chatbots. However, existing datasets are showing limitations for training chatbots, leading to a substantial demand for publicly available resources in the field of MI and psychotherapy. These challenges are even more pronounced in non-English languages, where they receive less attention. In this paper, we propose a novel framework that simulates MI sessions enriched with the expertise of professional therapists. We train an MI forecaster model that mimics the behavioral choices of professional therapists and employ Large Language Models (LLMs) to generate utterances through prompt engineering. Then, we present KMI, the first synthetic dataset theoretically grounded in MI, containing 1,000 high-quality Korean Motivational Interviewing dialogues. Through an extensive expert evaluation of the generated dataset and the dialogue model trained on it, we demonstrate the quality, expertise, and practicality of KMI. We also introduce novel metrics derived from MI theory in order to evaluate dialogues from the perspective of MI.
Abstract:Recent research has demonstrated that Large Language Models (LLMs) are not limited to text-only tasks but can also function as multimodal models across various modalities, including audio, images, and videos. In particular, research on 3D Large Multimodal Models (3D LMMs) is making notable strides, driven by the potential of processing higher-dimensional data like point clouds. However, upon closer examination, we find that the visual and textual content within each sample of existing training datasets lacks both high informational granularity and clarity, which serve as a bottleneck for precise cross-modal understanding. To address these issues, we propose CL3DOR, Contrastive Learning for 3D large multimodal models via Odds ratio on high-Resolution point clouds, designed to ensure greater specificity and clarity in both visual and textual content. Specifically, we increase the density of point clouds per object and construct informative hard negative responses in the training dataset to penalize unwanted responses. To leverage hard negative responses, we incorporate the odds ratio as an auxiliary term for contrastive learning into the conventional language modeling loss. CL3DOR achieves state-of-the-art performance in 3D scene understanding and reasoning benchmarks. Additionally, we demonstrate the effectiveness of CL3DOR's key components through extensive experiments.
Abstract:Difference visual question answering (diff-VQA) is a challenging task that requires answering complex questions based on differences between a pair of images. This task is particularly important in reading chest X-ray images because radiologists often compare multiple images of the same patient taken at different times to track disease progression and changes in its severity in their clinical practice. However, previous works focused on designing specific network architectures for the diff-VQA task, missing opportunities to enhance the model's performance using a pretrained vision-language model (VLM). Here, we introduce a novel VLM called PLURAL, which is pretrained on natural and longitudinal chest X-ray data for the diff-VQA task. The model is developed using a step-by-step approach, starting with being pretrained on natural images and texts, followed by being trained using longitudinal chest X-ray data. The longitudinal data consist of pairs of X-ray images, along with question-answer sets and radiologist's reports that describe the changes in lung abnormalities and diseases over time. Our experimental results show that the PLURAL model outperforms state-of-the-art methods not only in diff-VQA for longitudinal X-rays but also in conventional VQA for a single X-ray image. Through extensive experiments, we demonstrate the effectiveness of the proposed VLM architecture and pretraining method in improving the model's performance.
Abstract:Visual question answering (VQA) is a task where an image is given, and a series of questions are asked about the image. To build an efficient VQA algorithm, a large amount of QA data is required which is very expensive. Generating synthetic QA pairs based on templates is a practical way to obtain data. However, VQA models trained on those data do not perform well on complex, human-written questions. To address this issue, we propose a new method called {\it chain of QA for human-written questions} (CoQAH). CoQAH utilizes a sequence of QA interactions between a large language model and a VQA model trained on synthetic data to reason and derive logical answers for human-written questions. We tested the effectiveness of CoQAH on two types of human-written VQA datasets for 3D-rendered and chest X-ray images and found that it achieved state-of-the-art accuracy in both types of data. Notably, CoQAH outperformed general vision-language models, VQA models, and medical foundation models with no finetuning.