Abstract:The rapid development of machine learning and deep learning has introduced increasingly complex optimization challenges that must be addressed. Indeed, training modern, advanced models has become difficult to implement without leveraging multiple computing nodes in a distributed environment. Distributed optimization is also fundamental to emerging fields such as federated learning. Specifically, there is a need to organize the training process to minimize the time lost due to communication. A widely used and extensively researched technique to mitigate the communication bottleneck involves performing local training before communication. This approach is the focus of our paper. Concurrently, adaptive methods that incorporate scaling, notably led by Adam, have gained significant popularity in recent years. Therefore, this paper aims to merge the local training technique with the adaptive approach to develop efficient distributed learning methods. We consider the classical Local SGD method and enhance it with a scaling feature. A crucial aspect is that the scaling is described generically, allowing us to analyze various approaches, including Adam, RMSProp, and OASIS, in a unified manner. In addition to theoretical analysis, we validate the performance of our methods in practice by training a neural network.
Abstract:Large neural networks require enormous computational clusters of machines. Model-parallel training, when the model architecture is partitioned sequentially between workers, is a popular approach for training modern models. Information compression can be applied to decrease workers communication time, as it is often a bottleneck in such systems. This work explores how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence. We analyze compression methods such as quantization and TopK compression, and also experiment with error compensation techniques. Moreover, we employ TopK with AQ-SGD per-batch error feedback approach. We conduct experiments on image classification and language model fine-tuning tasks. Our findings demonstrate that gradients require milder compression rates than activations. We observe that $K=10\%$ is the lowest TopK compression level, which does not harm model convergence severely. Experiments also show that models trained with TopK perform well only when compression is also applied during inference. We find that error feedback techniques do not improve model-parallel training compared to plain compression, but allow model inference without compression with almost no quality drop. Finally, when applied with the AQ-SGD approach, TopK stronger than with $ K=30\%$ worsens model performance significantly.