Abstract:Creating 3D head avatars is a significant yet challenging task for many applicated scenarios. Previous studies have set out to learn 3D human head generative models using massive 2D image data. Although these models are highly generalizable for human appearance, their result models are not 360$^\circ$-renderable, and the predicted 3D geometry is unreliable. Therefore, such results cannot be used in VR, game modeling, and other scenarios that require 360$^\circ$-renderable 3D head models. An intuitive idea is that 3D head models with limited amount but high 3D accuracy are more reliable training data for a high-quality 3D generative model. In this vein, we delve into how to learn a native generative model for 360$^\circ$ full head from a limited 3D head dataset. Specifically, three major problems are studied: 1) how to effectively utilize various representations for generating the 360$^\circ$-renderable human head; 2) how to disentangle the appearance, shape, and motion of human faces to generate a 3D head model that can be edited by appearance and driven by motion; 3) and how to extend the generalization capability of the generative model to support downstream tasks. Comprehensive experiments are conducted to verify the effectiveness of the proposed model. We hope the proposed models and artist-designed dataset can inspire future research on learning native generative 3D head models from limited 3D datasets.
Abstract:Creating a 360{\deg} parametric model of a human head is a very challenging task. While recent advancements have demonstrated the efficacy of leveraging synthetic data for building such parametric head models, their performance remains inadequate in crucial areas such as expression-driven animation, hairstyle editing, and text-based modifications. In this paper, we build a dataset of artist-designed high-fidelity human heads and propose to create a novel parametric 360{\deg} renderable parametric head model from it. Our scheme decouples the facial motion/shape and facial appearance, which are represented by a classic parametric 3D mesh model and an attached neural texture, respectively. We further propose a training method for decompositing hairstyle and facial appearance, allowing free-swapping of the hairstyle. A novel inversion fitting method is presented based on single image input with high generalization and fidelity. To the best of our knowledge, our model is the first parametric 3D full-head that achieves 360{\deg} free-view synthesis, image-based fitting, appearance editing, and animation within a single model. Experiments show that facial motions and appearances are well disentangled in the parametric space, leading to SOTA performance in rendering and animating quality. The code and SynHead100 dataset are released at https://nju-3dv.github.io/projects/Head360.
Abstract:Recent geospatial machine learning studies have shown that the results of model evaluation via cross-validation (CV) are strongly affected by the dissimilarity between the sample data and the prediction locations. In this paper, we propose a method to quantify such a dissimilarity in the interval 0 to 100%, and from the perspective of the data feature space. The proposed method is based on adversarial validation, which is an approach that can check whether sample data and prediction locations can be separated with a binary classifier. To study the effectiveness and generality of our method, we tested it on a series of experiments based on both synthetic and real datasets and with gradually increasing dissimilarities. Results show that the proposed method can successfully quantify dissimilarity across the entire range of values. Next to this, we studied how dissimilarity affects CV evaluations by comparing the results of random CV and of two spatial CV methods, namely block and spatial+ CV. Our results showed that CV evaluations follow similar patterns in all datasets and predictions: when dissimilarity is low (usually lower than 30%), random CV provides the most accurate evaluation results. As dissimilarity increases, spatial CV methods, especially spatial+ CV, become more and more accurate and even outperforming random CV. When dissimilarity is high (>=90%), no CV method provides accurate evaluations. These results show the importance of considering feature space dissimilarity when working with geospatial machine learning predictions, and can help researchers and practitioners to select more suitable CV methods for evaluating their predictions.