Abstract:Hyperspectral images play a crucial role in precision agriculture, environmental monitoring or ecological analysis. However, due to sensor equipment and the imaging environment, the observed hyperspectral images are often inevitably corrupted by various noise. In this study, we proposed a truncated diffusion model, called TDiffDe, to recover the useful information in hyperspectral images gradually. Rather than starting from a pure noise, the input data contains image information in hyperspectral image denoising. Thus, we cut the trained diffusion model from small steps to avoid the destroy of valid information.
Abstract:We propose a cluster-based method to detect and locate eavesdropping events in optical line systems characterized by small power losses. Our findings indicate that detecting such subtle losses from eavesdropping can be accomplished solely through optical performance monitoring (OPM) data collected at the receiver. On the other hand, the localization of such events can be effectively achieved by leveraging in-line OPM data.