Abstract:Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query. Existing video temporal localization models rely on specific datasets for training and have high data collection costs, but they exhibit poor generalization capability under the across-dataset and out-of-distribution (OOD) settings. In this paper, we propose a Training-Free Video Temporal Grounding (TFVTG) approach that leverages the ability of pre-trained large models. A naive baseline is to enumerate proposals in the video and use the pre-trained visual language models (VLMs) to select the best proposal according to the vision-language alignment. However, most existing VLMs are trained on image-text pairs or trimmed video clip-text pairs, making it struggle to (1) grasp the relationship and distinguish the temporal boundaries of multiple events within the same video; (2) comprehend and be sensitive to the dynamic transition of events (the transition from one event to another) in the video. To address these issues, we propose leveraging large language models (LLMs) to analyze multiple sub-events contained in the query text and analyze the temporal order and relationships between these events. Secondly, we split a sub-event into dynamic transition and static status parts and propose the dynamic and static scoring functions using VLMs to better evaluate the relevance between the event and the description. Finally, for each sub-event description, we use VLMs to locate the top-k proposals and leverage the order and relationships between sub-events provided by LLMs to filter and integrate these proposals. Our method achieves the best performance on zero-shot video temporal grounding on Charades-STA and ActivityNet Captions datasets without any training and demonstrates better generalization capabilities in cross-dataset and OOD settings.
Abstract:Object detection in remote sensing images (RSIs) often suffers from several increasing challenges, including the large variation in object scales and the diverse-ranging context. Prior methods tried to address these challenges by expanding the spatial receptive field of the backbone, either through large-kernel convolution or dilated convolution. However, the former typically introduces considerable background noise, while the latter risks generating overly sparse feature representations. In this paper, we introduce the Poly Kernel Inception Network (PKINet) to handle the above challenges. PKINet employs multi-scale convolution kernels without dilation to extract object features of varying scales and capture local context. In addition, a Context Anchor Attention (CAA) module is introduced in parallel to capture long-range contextual information. These two components work jointly to advance the performance of PKINet on four challenging remote sensing detection benchmarks, namely DOTA-v1.0, DOTA-v1.5, HRSC2016, and DIOR-R.