Abstract:As facial appearance is subject to significant intra-class variations caused by the aging process over time, age-invariant face recognition (AIFR) remains a major challenge in face recognition community. To reduce the intra-class discrepancy caused by the aging, in this paper we propose a novel approach (namely, Orthogonal Embedding CNNs, or OE-CNNs) to learn the age-invariant deep face features. Specifically, we decompose deep face features into two orthogonal components to represent age-related and identity-related features. As a result, identity-related features that are robust to aging are then used for AIFR. Besides, for complementing the existing cross-age datasets and advancing the research in this field, we construct a brand-new large-scale Cross-Age Face dataset (CAF). Extensive experiments conducted on the three public domain face aging datasets (MORPH Album 2, CACD-VS and FG-NET) have shown the effectiveness of the proposed approach and the value of the constructed CAF dataset on AIFR. Benchmarking our algorithm on one of the most popular general face recognition (GFR) dataset LFW additionally demonstrates the comparable generalization performance on GFR.
Abstract:Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions such as center loss, large margin softmax loss, and angular softmax loss have been proposed. All these improved losses share the same idea: maximizing inter-class variance and minimizing intra-class variance. In this paper, we propose a novel loss function, namely large margin cosine loss (LMCL), to realize this idea from a different perspective. More specifically, we reformulate the softmax loss as a cosine loss by $L_2$ normalizing both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space. As a result, minimum intra-class variance and maximum inter-class variance are achieved by virtue of normalization and cosine decision margin maximization. We refer to our model trained with LMCL as CosFace. Extensive experimental evaluations are conducted on the most popular public-domain face recognition datasets such as MegaFace Challenge, Youtube Faces (YTF) and Labeled Face in the Wild (LFW). We achieve the state-of-the-art performance on these benchmarks, which confirms the effectiveness of our proposed approach.
Abstract:Face detection has achieved great success using the region-based methods. In this report, we propose a region-based face detector applying deep networks in a fully convolutional fashion, named Face R-FCN. Based on Region-based Fully Convolutional Networks (R-FCN), our face detector is more accurate and computational efficient compared with the previous R-CNN based face detectors. In our approach, we adopt the fully convolutional Residual Network (ResNet) as the backbone network. Particularly, We exploit several new techniques including position-sensitive average pooling, multi-scale training and testing and on-line hard example mining strategy to improve the detection accuracy. Over two most popular and challenging face detection benchmarks, FDDB and WIDER FACE, Face R-FCN achieves superior performance over state-of-the-arts.
Abstract:Faster R-CNN is one of the most representative and successful methods for object detection, and has been becoming increasingly popular in various objection detection applications. In this report, we propose a robust deep face detection approach based on Faster R-CNN. In our approach, we exploit several new techniques including new multi-task loss function design, online hard example mining, and multi-scale training strategy to improve Faster R-CNN in multiple aspects. The proposed approach is well suited for face detection, so we call it Face R-CNN. Extensive experiments are conducted on two most popular and challenging face detection benchmarks, FDDB and WIDER FACE, to demonstrate the superiority of the proposed approach over state-of-the-arts.