Abstract:Optical coherence tomography (OCT) can perform non-invasive high-resolution three-dimensional (3D) imaging and has been widely used in biomedical fields, while it is inevitably affected by coherence speckle noise which degrades OCT imaging performance and restricts its applications. Here we present a novel speckle-free OCT imaging strategy, named toward-ground-truth OCT (tGT-OCT), that utilizes unsupervised 3D deep-learning processing and leverages OCT 3D imaging features to achieve speckle-free OCT imaging. Specifically, our proposed tGT-OCT utilizes an unsupervised 3D-convolution deep-learning network trained using random 3D volumetric data to distinguish and separate speckle from real structures in 3D imaging volumetric space; moreover, tGT-OCT effectively further reduces speckle noise and reveals structures that would otherwise be obscured by speckle noise while preserving spatial resolution. Results derived from different samples demonstrated the high-quality speckle-free 3D imaging performance of tGT-OCT and its advancement beyond the previous state-of-the-art.
Abstract:This paper describes the joint submission of Alibaba and Soochow University, TSMind, to the WMT 2022 Shared Task on Translation Suggestion (TS). We participate in the English-German and English-Chinese tasks. Basically, we utilize the model paradigm fine-tuning on the downstream tasks based on large-scale pre-trained models, which has recently achieved great success. We choose FAIR's WMT19 English-German news translation system and MBART50 for English-Chinese as our pre-trained models. Considering the task's condition of limited use of training data, we follow the data augmentation strategies proposed by WeTS to boost our TS model performance. The difference is that we further involve the dual conditional cross-entropy model and GPT-2 language model to filter augmented data. The leader board finally shows that our submissions are ranked first in three of four language directions in the Naive TS task of the WMT22 Translation Suggestion task.
Abstract:Fully machine translation scarcely guarantees error-free results. Humans perform post-editing on machine generated translations to correct errors in the scenario of computer aided translation. In favor of expediting the post-editing process, recent works have investigated machine translation in an interactive mode, where machines can automatically refine the rest of translations constrained on human's edits. In this paper, we utilize the parameterized objective function of neural machine translation and propose an easy constrained decoding algorithm to improve the translation quality without additional training. We demonstrate its capability and time efficiency on a benchmark dataset, WeTS, where it conditions on humans' guidelines by selecting spans with potential errors. In the experimental results, our algorithm is significantly superior to state-of-the-art lexically constrained decoding method by an increase of 10.37 BLEU in translation quality and a decrease of 63.4% in time cost on average. It even outperforms the benchmark systems trained with a large amount of annotated data on WeTS in English-German and German-English.