Abstract:Speaker diarization, the process of segmenting an audio stream or transcribed speech content into homogenous partitions based on speaker identity, plays a crucial role in the interpretation and analysis of human speech. Most existing speaker diarization systems rely exclusively on unimodal acoustic information, making the task particularly challenging due to the innate ambiguities of audio signals. Recent studies have made tremendous efforts towards audio-visual or audio-semantic modeling to enhance performance. However, even the incorporation of up to two modalities often falls short in addressing the complexities of spontaneous and unstructured conversations. To exploit more meaningful dialogue patterns, we propose a novel multimodal approach that jointly utilizes audio, visual, and semantic cues to enhance speaker diarization. Our method elegantly formulates the multimodal modeling as a constrained optimization problem. First, we build insights into the visual connections among active speakers and the semantic interactions within spoken content, thereby establishing abundant pairwise constraints. Then we introduce a joint pairwise constraint propagation algorithm to cluster speakers based on these visual and semantic constraints. This integration effectively leverages the complementary strengths of different modalities, refining the affinity estimation between individual speaker embeddings. Extensive experiments conducted on multiple multimodal datasets demonstrate that our approach consistently outperforms state-of-the-art speaker diarization methods.
Abstract:This paper introduces 3D-Speaker-Toolkit, an open source toolkit for multi-modal speaker verification and diarization. It is designed for the needs of academic researchers and industrial practitioners. The 3D-Speaker-Toolkit adeptly leverages the combined strengths of acoustic, semantic, and visual data, seamlessly fusing these modalities to offer robust speaker recognition capabilities. The acoustic module extracts speaker embeddings from acoustic features, employing both fully-supervised and self-supervised learning approaches. The semantic module leverages advanced language models to apprehend the substance and context of spoken language, thereby augmenting the system's proficiency in distinguishing speakers through linguistic patterns. Finally, the visual module applies image processing technologies to scrutinize facial features, which bolsters the precision of speaker diarization in multi-speaker environments. Collectively, these modules empower the 3D-Speaker-Toolkit to attain elevated levels of accuracy and dependability in executing speaker-related tasks, establishing a new benchmark in multi-modal speaker analysis. The 3D-Speaker project also includes a handful of open-sourced state-of-the-art models and a large dataset containing over 10,000 speakers. The toolkit is publicly available at https://github.com/alibaba-damo-academy/3D-Speaker.