https://github.com/alibaba-damo-academy/3D-Speaker.
This paper introduces 3D-Speaker-Toolkit, an open source toolkit for multi-modal speaker verification and diarization. It is designed for the needs of academic researchers and industrial practitioners. The 3D-Speaker-Toolkit adeptly leverages the combined strengths of acoustic, semantic, and visual data, seamlessly fusing these modalities to offer robust speaker recognition capabilities. The acoustic module extracts speaker embeddings from acoustic features, employing both fully-supervised and self-supervised learning approaches. The semantic module leverages advanced language models to apprehend the substance and context of spoken language, thereby augmenting the system's proficiency in distinguishing speakers through linguistic patterns. Finally, the visual module applies image processing technologies to scrutinize facial features, which bolsters the precision of speaker diarization in multi-speaker environments. Collectively, these modules empower the 3D-Speaker-Toolkit to attain elevated levels of accuracy and dependability in executing speaker-related tasks, establishing a new benchmark in multi-modal speaker analysis. The 3D-Speaker project also includes a handful of open-sourced state-of-the-art models and a large dataset containing over 10,000 speakers. The toolkit is publicly available at