Abstract:Recurrent neural network (RNNs) that are capable of modeling long-distance dependencies are widely used in various speech tasks, eg., keyword spotting (KWS) and speech enhancement (SE). Due to the limitation of power and memory in low-resource devices, efficient RNN models are urgently required for real-world applications. In this paper, we propose an efficient RNN architecture, GhostRNN, which reduces hidden state redundancy with cheap operations. In particular, we observe that partial dimensions of hidden states are similar to the others in trained RNN models, suggesting that redundancy exists in specific RNNs. To reduce the redundancy and hence computational cost, we propose to first generate a few intrinsic states, and then apply cheap operations to produce ghost states based on the intrinsic states. Experiments on KWS and SE tasks demonstrate that the proposed GhostRNN significantly reduces the memory usage (~40%) and computation cost while keeping performance similar.
Abstract:Direct mesh fitting for 3D hand shape reconstruction is highly accurate. However, the reconstructed meshes are prone to artifacts and do not appear as plausible hand shapes. Conversely, parametric models like MANO ensure plausible hand shapes but are not as accurate as the non-parametric methods. In this work, we introduce a novel weakly-supervised hand shape estimation framework that integrates non-parametric mesh fitting with MANO model in an end-to-end fashion. Our joint model overcomes the tradeoff in accuracy and plausibility to yield well-aligned and high-quality 3D meshes, especially in challenging two-hand and hand-object interaction scenarios.
Abstract:In computer vision, it is often observed that formulating regression problems as a classification task often yields better performance. We investigate this curious phenomenon and provide a derivation to show that classification, with the cross-entropy loss, outperforms regression with a mean squared error loss in its ability to learn high-entropy feature representations. Based on the analysis, we propose an ordinal entropy loss to encourage higher-entropy feature spaces while maintaining ordinal relationships to improve the performance of regression tasks. Experiments on synthetic and real-world regression tasks demonstrate the importance and benefits of increasing entropy for regression.