Abstract:The extended Weber location problem is a classical optimization problem that has inspired some new works in several machine learning scenarios recently. However, most existing algorithms may get stuck due to the singularity at the data points when the power of the cost function $1\leqslant q<2$, such as the widely-used iterative Weiszfeld approach. In this paper, we establish a de-singularity subgradient approach for this problem. We also provide a complete proof of convergence which has fixed some incomplete statements of the proofs for some previous Weiszfeld algorithms. Moreover, we deduce a new theoretical result of superlinear convergence for the iteration sequence in a special case where the minimum point is a singular point. We conduct extensive experiments in a real-world machine learning scenario to show that the proposed approach solves the singularity problem, produces the same results as in the non-singularity cases, and shows a reasonable rate of linear convergence. The results also indicate that the $q$-th power case ($1<q<2$) is more advantageous than the $1$-st power case and the $2$-nd power case in some situations. Hence the de-singularity subgradient approach is beneficial to advancing both theory and practice for the extended Weber location problem.
Abstract:The goal of blind image deblurring is to recover sharp image from one input blurred image with an unknown blur kernel. Most of image deblurring approaches focus on developing image priors, however, there is not enough attention to the influence of image details and structures on the blur kernel estimation. What is the useful image structure and how to choose a good deblurring region? In this work, we propose a deep neural network model method for selecting good regions to estimate blur kernel. First we construct image patches with labels and train a deep neural networks, then the learned model is applied to determine which region of the image is most suitable to deblur. Experimental results illustrate that the proposed approach is effective, and could be able to select good regions for image deblurring.