Abstract:Medical image segmentation often faces the challenge of prohibitively expensive annotation costs. While few-shot learning offers a promising solution to alleviate this burden, conventional approaches still rely heavily on pre-training with large volumes of labeled data from known categories. To address this issue, we propose leveraging the Segment Anything Model (SAM), pre-trained on over 1 billion masks, thus circumventing the need for extensive domain-specific annotated data. In light of this, we developed SAM-MPA, an innovative SAM-based framework for few-shot medical image segmentation using Mask Propagation-based Auto-prompting. Initially, we employ k-centroid clustering to select the most representative examples for labelling to construct the support set. These annotated examples are registered to other images yielding deformation fields that facilitate the propagation of the mask knowledge to obtain coarse masks across the dataset. Subsequently, we automatically generate visual prompts based on the region and boundary expansion of the coarse mask, including points, box and a coarse mask. Finally, we can obtain the segmentation predictions by inputting these prompts into SAM and refine the results by post refinement module. We validate the performance of the proposed framework through extensive experiments conducted on two medical image datasets with different modalities. Our method achieves Dices of 74.53%, 94.36% on Breast US, Chest X-ray, respectively. Experimental results substantiate that SAM-MPA yields high-accuracy segmentations within 10 labeled examples, outperforming other state-of-the-art few-shot auto-segmentation methods. Our method enables the customization of SAM for any medical image dataset with a small number of labeled examples.
Abstract:Text-to-image generation has important implications for generation of diverse and controllable images. Several attempts have been made to adapt Stable Diffusion (SD) to the medical domain. However, the large distribution difference between medical reports and natural texts, as well as high computational complexity in common stable diffusion limit the authenticity and feasibility of the generated medical images. To solve above problems, we propose a novel light-weight transformer-based diffusion model learning framework, Chest-Diffusion, for report-to-CXR generation. Chest-Diffusion employs a domain-specific text encoder to obtain accurate and expressive text features to guide image generation, improving the authenticity of the generated images. Meanwhile, we introduce a light-weight transformer architecture as the denoising model, reducing the computational complexity of the diffusion model. Experiments demonstrate that our Chest-Diffusion achieves the lowest FID score 24.456, under the computation budget of 118.918 GFLOPs, which is nearly one-third of the computational complexity of SD.
Abstract:Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundational models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.