Abstract:In order to address the lack of applicable channel models for ISAC research and evaluation, we release Sensiverse, a dataset that can be used for ISAC research. In this paper, we present the method of generating Sensiverse, including the acquisition and formatting of the 3D scene models, the generation of the channel data and associations with Tx/Rx deployment. The file structure and usage of the dataset are also described, and finally the use of the dataset is illustrated with examples through the evaluation of use cases such as 3D environment reconstruction and moving targets.
Abstract:Integrated sensing and communication (ISAC) is a promising technology to improve the band-utilization efficiency via spectrum sharing or hardware sharing between radar and communication systems. Since a common radio resource budget is shared by both functionalities, there exists a tradeoff between the sensing and communication performance. However, this tradeoff curve is currently unknown in ISAC systems with human motion recognition tasks based on deep learning. To fill this gap, this paper formulates and solves a multi-objective optimization problem which simultaneously maximizes the recognition accuracy and the communication data rate. The key ingredient of this new formulation is a nonlinear recognition accuracy model with respect to the wireless resources, where the model is derived from power function regression of the system performance of the deep spectrogram network. To avoid cost-expensive data collection procedures, a primitive-based autoregressive hybrid (PBAH) channel model is developed, which facilitates efficient training and testing dataset generation for human motion recognition in a virtual environment. Extensive results demonstrate that the proposed wireless recognition accuracy and PBAH channel models match the actual experimental data very well. Moreover, it is found that the accuracy-rate region consists of a communication saturation zone, a sensing saturation zone, and a communication-sensing adversarial zone, of which the third zone achieves the desirable balanced performance for ISAC systems.
Abstract:Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding. Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals. However, whether a deeper learning model could improve the system performance is currently not known. On the other hand, training a machine learning model requires a large dataset, but data gathering from experiment is cost-expensive and time-consuming. Although wireless channel models can be adopted for dataset generation, current channel models are mostly designed for communication rather than sensing. To address the above problems, this paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance. Furthermore, a primitive based autoregressive hybrid (PBAH) channel model is developed, which facilitates efficient training and testing dataset generation for HMR in a virtual environment. Experimental results demonstrate that the proposed PBAH channel model matches the actual experimental data very well and the proposed DSN achieves significantly smaller recognition error than that of CNN.
Abstract:In activity recognition, it is often expensive and time-consuming to acquire sufficient activity labels. To solve this problem, transfer learning leverages the labeled samples from the source domain to annotate the target domain which has few or none labels. Existing approaches typically consider learning a global domain shift while ignoring the intra-affinity between classes, which will hinder the performance of the algorithms. In this paper, we propose a novel and general cross-domain learning framework that can exploit the intra-affinity of classes to perform intra-class knowledge transfer. The proposed framework, referred to as Stratified Transfer Learning (STL), can dramatically improve the classification accuracy for cross-domain activity recognition. Specifically, STL first obtains pseudo labels for the target domain via majority voting technique. Then, it performs intra-class knowledge transfer iteratively to transform both domains into the same subspaces. Finally, the labels of target domain are obtained via the second annotation. To evaluate the performance of STL, we conduct comprehensive experiments on three large public activity recognition datasets~(i.e. OPPORTUNITY, PAMAP2, and UCI DSADS), which demonstrates that STL significantly outperforms other state-of-the-art methods w.r.t. classification accuracy (improvement of 7.68%). Furthermore, we extensively investigate the performance of STL across different degrees of similarities and activity levels between domains. And we also discuss the potential of STL in other pervasive computing applications to provide empirical experience for future research.
Abstract:Sensor-based activity recognition seeks the profound high-level knowledge about human activities from multitudes of low-level sensor readings. Conventional pattern recognition approaches have made tremendous progress in the past years. However, those methods often heavily rely on heuristic hand-crafted feature extraction, which could hinder their generalization performance. Additionally, existing methods are undermined for unsupervised and incremental learning tasks. Recently, the recent advancement of deep learning makes it possible to perform automatic high-level feature extraction thus achieves promising performance in many areas. Since then, deep learning based methods have been widely adopted for the sensor-based activity recognition tasks. This paper surveys the recent advance of deep learning based sensor-based activity recognition. We summarize existing literature from three aspects: sensor modality, deep model, and application. We also present detailed insights on existing work and propose grand challenges for future research.