Abstract:Video Frame Interpolation (VFI) has been extensively explored and demonstrated, yet its application to polarization remains largely unexplored. Due to the selective transmission of light by polarized filters, longer exposure times are typically required to ensure sufficient light intensity, which consequently lower the temporal sample rates. Furthermore, because polarization reflected by objects varies with shooting perspective, focusing solely on estimating pixel displacement is insufficient to accurately reconstruct the intermediate polarization. To tackle these challenges, this study proposes a multi-stage and multi-scale network called Swin-VFI based on the Swin-Transformer and introduces a tailored loss function to facilitate the network's understanding of polarization changes. To ensure the practicality of our proposed method, this study evaluates its interpolated frames in Shape from Polarization (SfP) and Human Shape Reconstruction tasks, comparing them with other state-of-the-art methods such as CAIN, FLAVR, and VFIT. Experimental results demonstrate our approach's superior reconstruction accuracy across all tasks.
Abstract:Infrared pulse thermography non-destructive testing (NDT) method is developed based on the difference in the infrared radiation intensity emitted by defective and non-defective areas of an object. However, when the radiation intensity of the defective target is similar to that of the non-defective area of the object, the detection results are poor. To address this issue, this study investigated the polarization characteristics of the infrared radiation of different materials. Simulation results showed that the degree of infrared polarization of the object surface changed regularly with changes in thermal environment radiation. An infrared polarization imaging-based NDT method was proposed and demonstrated using specimens with four different simulated defective areas, which were designed and fabricated using four different materials. The experimental results were consistent with the simulation results, thereby proving the effectiveness of the proposed method. Compared with the infrared-radiation-intensity-based NDT method, the proposed method improved the image detail presentation and detection accuracy.