Abstract:Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories. First, \emph{node-wise} architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions. While extremely efficient at inference time (since node embeddings are only computed once and repeatedly reused), model expressiveness is limited such that isomorphic nodes contributing to candidate edges may not be distinguishable, compromising accuracy. In contrast, \emph{edge-wise} methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships, disambiguating isomorphic nodes to improve accuracy, but with the cost of increased model complexity. To better navigate this trade-off, we propose a novel GNN architecture whereby the \emph{forward pass} explicitly depends on \emph{both} positive (as is typical) and negative (unique to our approach) edges to inform more flexible, yet still cheap node-wise embeddings. This is achieved by recasting the embeddings themselves as minimizers of a forward-pass-specific energy function (distinct from the actual training loss) that favors separation of positive and negative samples. As demonstrated by extensive empirical evaluations, the resulting architecture retains the inference speed of node-wise models, while producing competitive accuracy with edge-wise alternatives.
Abstract:Label smoothing is a regularization technique widely used in supervised learning to improve the generalization of models on various tasks, such as image classification and machine translation. However, the effectiveness of label smoothing in multi-hop question answering (MHQA) has yet to be well studied. In this paper, we systematically analyze the role of label smoothing on various modules of MHQA and propose F1 smoothing, a novel label smoothing technique specifically designed for machine reading comprehension (MRC) tasks. We evaluate our method on the HotpotQA dataset and demonstrate its superiority over several strong baselines, including models that utilize complex attention mechanisms. Our results suggest that label smoothing can be effective in MHQA, but the choice of smoothing strategy can significantly affect performance.