Abstract:Generating consecutive descriptions for videos, i.e., Video Captioning, requires taking full advantage of visual representation along with the generation process. Existing video captioning methods focus on making an exploration of spatial-temporal representations and their relationships to produce inferences. However, such methods only exploit the superficial association contained in the video itself without considering the intrinsic visual commonsense knowledge that existed in a video dataset, which may hinder their capabilities of knowledge cognitive to reason accurate descriptions. To address this problem, we propose a simple yet effective method, called Visual Commonsense-aware Representation Network (VCRN), for video captioning. Specifically, we construct a Video Dictionary, a plug-and-play component, obtained by clustering all video features from the total dataset into multiple clustered centers without additional annotation. Each center implicitly represents a visual commonsense concept in the video domain, which is utilized in our proposed Visual Concept Selection (VCS) to obtain a video-related concept feature. Next, a Conceptual Integration Generation (CIG) is proposed to enhance the caption generation. Extensive experiments on three publicly video captioning benchmarks: MSVD, MSR-VTT, and VATEX, demonstrate that our method reaches state-of-the-art performance, indicating the effectiveness of our method. In addition, our approach is integrated into the existing method of video question answering and improves this performance, further showing the generalization of our method. Source code has been released at https://github.com/zchoi/VCRN.
Abstract:Recent progress has been made in using attention based encoder-decoder framework for image and video captioning. Most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of visual captioning. Furthermore, the hierarchy of LSTMs enables more complex representation of visual data, capturing information at different scales. To address these issues, we propose a hierarchical LSTM with adaptive attention (hLSTMat) approach for image and video captioning. Specifically, the proposed framework utilizes the spatial or temporal attention for selecting specific regions or frames to predict the related words, while the adaptive attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the caption generation. We initially design our hLSTMat for video captioning task. Then, we further refine it and apply it to image captioning task. To demonstrate the effectiveness of our proposed framework, we test our method on both video and image captioning tasks. Experimental results show that our approach achieves the state-of-the-art performance for most of the evaluation metrics on both tasks. The effect of important components is also well exploited in the ablation study.
Abstract:Existing video hash functions are built on three isolated stages: frame pooling, relaxed learning, and binarization, which have not adequately explored the temporal order of video frames in a joint binary optimization model, resulting in severe information loss. In this paper, we propose a novel unsupervised video hashing framework dubbed Self-Supervised Video Hashing (SSVH), that is able to capture the temporal nature of videos in an end-to-end learning-to-hash fashion. We specifically address two central problems: 1) how to design an encoder-decoder architecture to generate binary codes for videos; and 2) how to equip the binary codes with the ability of accurate video retrieval. We design a hierarchical binary autoencoder to model the temporal dependencies in videos with multiple granularities, and embed the videos into binary codes with less computations than the stacked architecture. Then, we encourage the binary codes to simultaneously reconstruct the visual content and neighborhood structure of the videos. Experiments on two real-world datasets (FCVID and YFCC) show that our SSVH method can significantly outperform the state-of-the-art methods and achieve the currently best performance on the task of unsupervised video retrieval.