Abstract:The possibility of jointly optimizing location sensing and communication resources, facilitated by the existence of communication and sensing spectrum sharing, is what promotes the system performance to a higher level. However, the rapid mobility of user equipment (UE) can result in inaccurate location estimation, which can severely degrade system performance. Therefore, the precise UE location sensing and resource allocation issues are investigated in a spectrum sharing sixth generation network. An approach is proposed for joint subcarrier and power optimization based on UE location sensing, aiming to minimize system energy consumption. The joint allocation process is separated into two key phases of operation. In the radar location sensing phase, the multipath interference and Doppler effects are considered simultaneously, and the issues of UE's location and channel state estimation are transformed into a convex optimization problem, which is then solved through gradient descent. In the communication phase, a subcarrier allocation method based on subcarrier weights is proposed. To further minimize system energy consumption, a joint subcarrier and power allocation method is introduced, resolved via the Lagrange multiplier method for the non-convex resource allocation problem. Simulation analysis results indicate that the location sensing algorithm exhibits a prominent improvement in accuracy compared to benchmark algorithms. Simultaneously, the proposed resource allocation scheme also demonstrates a substantial enhancement in performance relative to baseline schemes.
Abstract:Due to the rapid growth of data transmissions in internet of vehicles (IoV), finding schemes that can effectively alleviate access congestion has become an important issue. Recently, many traffic control schemes have been studied. Nevertheless, the dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies, which is significant for the random access resource allocation. In this paper, we consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it. Firstly, IoV devices are divided into various classes based on delay characteristics. The target of maximizing the successful transmission of packets with the success rate constraint is established. Then, the optimization objective is transformed into a markov decision process (MDP) model. Finally, the access class barring (ACB) factors are obtained based on the PPO method to maximize the number of successful access devices. The performance of the proposal algorithm in respect of successful events and delay compared to existing schemes is verified by simulations.
Abstract:In this paper, an IRS-aided integrated sensing and communications (ISAC) system operating in the terahertz (THz) band is proposed to maximize the system capacity. Transmit beamforming and phase-shift design are transformed into a universal optimization problem with ergodic constraints. Then the joint optimization of transmit beamforming and phase-shift design is achieved by gradient-based, primal-dual proximal policy optimization (PPO) in the multi-user multiple-input single-output (MISO) scenario. Specifically, the actor part generates continuous transmit beamforming and the critic part takes charge of discrete phase shift design. Based on the MISO scenario, we investigate a distributed PPO (DPPO) framework with the concept of multi-threading learning in the multi-user multiple-input multiple-output (MIMO) scenario. Simulation results demonstrate the effectiveness of the primal-dual PPO algorithm and its multi-threading version in terms of transmit beamforming and phase-shift design.