Abstract:We present an object detection framework based on PaddlePaddle. We put all the strategies together (multi-scale training, FPN, Cascade, Dcnv2, Non-local, libra loss) based on ResNet200-vd backbone. Our model score on public leaderboard comes to 0.6269 with single scale test. We proposed a new voting method called top-k voting-nms, based on the SoftNMS detection results. The voting method helps us merge all the models' results more easily and achieve 2nd place in the Google AI Open Images Object Detection Track 2019.
Abstract:We present a retrieval based system for landmark retrieval and recognition challenge.There are five parts in retrieval competition system, including feature extraction and matching to get candidates queue; database augmentation and query extension searching; reranking from recognition results and local feature matching. In recognition challenge including: landmark and non-landmark recognition, multiple recognition results voting and reranking using combination of recognition and retrieval results. All of models trained and predicted by PaddlePaddle framework. Using our method, we achieved 2nd place in the Google Landmark Recognition 2019 and 2nd place in the Google Landmark Retrieval 2019 on kaggle. The source code is available at here.