Abstract:P300 speller BCIs allow users to compose sentences by selecting target keys on a GUI through the detection of P300 component in their EEG signals following visual stimuli. Most P300 speller BCIs require users to spell words letter by letter, or the first few initial letters, resulting in high keystroke demands that increase time, cognitive load, and fatigue. This highlights the need for more efficient, user-friendly methods for faster sentence composition. In this work, we introduce ChatBCI, a P300 speller BCI that leverages the zero-shot learning capabilities of large language models (LLMs) to suggest words from user-spelled initial letters or predict the subsequent word(s), reducing keystrokes and accelerating sentence composition. ChatBCI retrieves word suggestions through remote queries to the GPT-3.5 API. A new GUI, displaying GPT-3.5 word suggestions as extra keys is designed. SWLDA is used for the P300 classification. Seven subjects completed two online spelling tasks: 1) copy-spelling a self-composed sentence using ChatBCI, and 2) improvising a sentence using ChatBCI's word suggestions. Results demonstrate that in Task 1, on average, ChatBCI outperforms letter-by-letter BCI spellers, reducing time and keystrokes by 62.14% and 53.22%, respectively, and increasing information transfer rate by 198.96%. In Task 2, ChatBCI achieves 80.68% keystroke savings and a record 8.53 characters/min for typing speed. Overall, ChatBCI, by employing remote LLM queries, enhances sentence composition in realistic scenarios, significantly outperforming traditional spellers without requiring local model training or storage. ChatBCI's (multi-) word predictions, combined with its new GUI, pave the way for developing next-generation speller BCIs that are efficient and effective for real-time communication, especially for users with communication and motor disabilities.
Abstract:Consider the online testing of a stream of hypotheses where a real--time decision must be made before the next data point arrives. The error rate is required to be controlled at {all} decision points. Conventional \emph{simultaneous testing rules} are no longer applicable due to the more stringent error constraints and absence of future data. Moreover, the online decision--making process may come to a halt when the total error budget, or alpha--wealth, is exhausted. This work develops a new class of structure--adaptive sequential testing (SAST) rules for online false discover rate (FDR) control. A key element in our proposal is a new alpha--investment algorithm that precisely characterizes the gains and losses in sequential decision making. SAST captures time varying structures of the data stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the alpha-wealth allocation across different time periods. We present theory and numerical results to show that the proposed method is valid for online FDR control and achieves substantial power gain over existing online testing rules.
Abstract:The point spread function reflects the state of an optical telescope and it is important for data post-processing methods design. For wide field small aperture telescopes, the point spread function is hard to model, because it is affected by many different effects and has strong temporal and spatial variations. In this paper, we propose to use the denoising autoencoder, a type of deep neural network, to model the point spread function of wide field small aperture telescopes. The denoising autoencoder is a pure data based point spread function modelling method, which uses calibration data from real observations or numerical simulated results as point spread function templates. According to real observation conditions, different levels of random noise or aberrations are added to point spread function templates, making them as realizations of the point spread function, i.e., simulated star images. Then we train the denoising autoencoder with realizations and templates of the point spread function. After training, the denoising autoencoder learns the manifold space of the point spread function and can map any star images obtained by wide field small aperture telescopes directly to its point spread function, which could be used to design data post-processing or optical system alignment methods.