Abstract:There has been a surge of interest in language model agents that can navigate virtual environments such as the web or desktop. To navigate such environments, agents benefit from information on the various elements (e.g., buttons, text, or images) present. It remains unclear which element attributes have the greatest impact on agent performance, especially in environments that only provide a graphical representation (i.e., pixels). Here we find that the ordering in which elements are presented to the language model is surprisingly impactful--randomizing element ordering in a webpage degrades agent performance comparably to removing all visible text from an agent's state representation. While a webpage provides a hierarchical ordering of elements, there is no such ordering when parsing elements directly from pixels. Moreover, as tasks become more challenging and models more sophisticated, our experiments suggest that the impact of ordering increases. Finding an effective ordering is non-trivial. We investigate the impact of various element ordering methods in web and desktop environments. We find that dimensionality reduction provides a viable ordering for pixel-only environments. We train a UI element detection model to derive elements from pixels and apply our findings to an agent benchmark--OmniACT--where we only have access to pixels. Our method completes more than two times as many tasks on average relative to the previous state-of-the-art.
Abstract:We describe a novel approach for generating music using a self-correcting, non-chronological, autoregressive model. We represent music as a sequence of edit events, each of which denotes either the addition or removal of a note---even a note previously generated by the model. During inference, we generate one edit event at a time using direct ancestral sampling. Our approach allows the model to fix previous mistakes such as incorrectly sampled notes and prevent accumulation of errors which autoregressive models are prone to have. Another benefit is a finer, note-by-note control during human and AI collaborative composition. We show through quantitative metrics and human survey evaluation that our approach generates better results than orderless NADE and Gibbs sampling approaches.