Abstract:Knowledge graphs have gained popularity for their ability to organize and analyze complex data effectively. When combined with graph embedding techniques, such as graph neural networks (GNNs), knowledge graphs become a potent tool in providing valuable insights. This study explores the application of graph embedding in identifying competitors from a financial knowledge graph. Existing state-of-the-art(SOTA) models face challenges due to the unique attributes of our knowledge graph, including directed and undirected relationships, attributed nodes, and minimal annotated competitor connections. To address these challenges, we propose a novel graph embedding model, JPEC(JPMorgan Proximity Embedding for Competitor Detection), which utilizes graph neural network to learn from both first-order and second-order node proximity together with vital features for competitor retrieval. JPEC had outperformed most existing models in extensive experiments, showcasing its effectiveness in competitor retrieval.
Abstract:Knowledge Graphs have emerged as a compelling abstraction for capturing key relationship among the entities of interest to enterprises and for integrating data from heterogeneous sources. JPMorgan Chase (JPMC) is leading this trend by leveraging knowledge graphs across the organization for multiple mission critical applications such as risk assessment, fraud detection, investment advice, etc. A core problem in leveraging a knowledge graph is to link mentions (e.g., company names) that are encountered in textual sources to entities in the knowledge graph. Although several techniques exist for entity linking, they are tuned for entities that exist in Wikipedia, and fail to generalize for the entities that are of interest to an enterprise. In this paper, we propose a novel end-to-end neural entity linking model (JEL) that uses minimal context information and a margin loss to generate entity embeddings, and a Wide & Deep Learning model to match character and semantic information respectively. We show that JEL achieves the state-of-the-art performance to link mentions of company names in financial news with entities in our knowledge graph. We report on our efforts to deploy this model in the company-wide system to generate alerts in response to financial news. The methodology used for JEL is directly applicable and usable by other enterprises who need entity linking solutions for data that are unique to their respective situations.
Abstract:Outfit recommendation requires the answers of some challenging outfit compatibility questions such as 'Which pair of boots and school bag go well with my jeans and sweater?'. It is more complicated than conventional similarity search, and needs to consider not only visual aesthetics but also the intrinsic fine-grained and multi-category nature of fashion items. Some existing approaches solve the problem through sequential models or learning pair-wise distances between items. However, most of them only consider coarse category information in defining fashion compatibility while neglecting the fine-grained category information often desired in practical applications. To better define the fashion compatibility and more flexibly meet different needs, we propose a novel problem of learning compatibility among multiple tuples (each consisting of an item and category pair), and recommending fashion items following the category choices from customers. Our contributions include: 1) Designing a Mixed Category Attention Net (MCAN) which integrates both fine-grained and coarse category information into recommendation and learns the compatibility among fashion tuples. MCAN can explicitly and effectively generate diverse and controllable recommendations based on need. 2) Contributing a new dataset IQON, which follows eastern culture and can be used to test the generalization of recommendation systems. Our extensive experiments on a reference dataset Polyvore and our dataset IQON demonstrate that our method significantly outperforms state-of-the-art recommendation methods.
Abstract:We introduce the "adversarial code learning" (ACL) module that improves overall image generation performance to several types of deep models. Instead of performing a posterior distribution modeling in the pixel spaces of generators, ACLs aim to jointly learn a latent code with another image encoder/inference net, with a prior noise as its input. We conduct the learning in an adversarial learning process, which bears a close resemblance to the original GAN but again shifts the learning from image spaces to prior and latent code spaces. ACL is a portable module that brings up much more flexibility and possibilities in generative model designs. First, it allows flexibility to convert non-generative models like Autoencoders and standard classification models to decent generative models. Second, it enhances existing GANs' performance by generating meaningful codes and images from any part of the prior. We have incorporated our ACL module with the aforementioned frameworks and have performed experiments on synthetic, MNIST, CIFAR-10, and CelebA datasets. Our models have achieved significant improvements which demonstrated the generality for image generation tasks.
Abstract:In this paper, we introduce attribute-aware fashion-editing, a novel task, to the fashion domain. We re-define the overall objectives in AttGAN and propose the Fashion-AttGAN model for this new task. A dataset is constructed for this task with 14,221 and 22 attributes, which has been made publically available. Experimental results show the effectiveness of our Fashion-AttGAN on fashion editing over the original AttGAN.