Abstract:Segmentation of fetal brain tissue from magnetic resonance imaging (MRI) plays a crucial role in the study of in utero neurodevelopment. However, automated tools face substantial domain shift challenges as they must be robust to highly heterogeneous clinical data, often limited in numbers and lacking annotations. Indeed, high variability of the fetal brain morphology, MRI acquisition parameters, and superresolution reconstruction (SR) algorithms adversely affect the model's performance when evaluated out-of-domain. In this work, we introduce FetalSynthSeg, a domain randomization method to segment fetal brain MRI, inspired by SynthSeg. Our results show that models trained solely on synthetic data outperform models trained on real data in out-ofdomain settings, validated on a 120-subject cross-domain dataset. Furthermore, we extend our evaluation to 40 subjects acquired using lowfield (0.55T) MRI and reconstructed with novel SR models, showcasing robustness across different magnetic field strengths and SR algorithms. Leveraging a generative synthetic approach, we tackle the domain shift problem in fetal brain MRI and offer compelling prospects for applications in fields with limited and highly heterogeneous data.
Abstract:Bipolar disorder (BD) and schizophrenia (SZ) are severe mental disorders with profound societal impact. Identifying risk markers early is crucial for understanding disease progression and enabling preventive measures. The Danish High Risk and Resilience Study (VIA) focuses on understanding early disease processes, particularly in children with familial high risk (FHR). Understanding structural brain changes associated with these diseases during early stages is essential for effective interventions. The central sulcus (CS) is a prominent brain landmark related to brain regions involved in motor and sensory processing. Analyzing CS morphology can provide valuable insights into neurodevelopmental abnormalities in the FHR group. However, segmenting the central sulcus (CS) presents challenges due to its variability, especially in adolescents. This study introduces two novel approaches to improve CS segmentation: synthetic data generation to model CS variability and self-supervised pre-training with multi-task learning to adapt models to new cohorts. These methods aim to enhance segmentation performance across diverse populations, eliminating the need for extensive preprocessing.