Abstract:The performance cost of differential privacy has, for some applications, been shown to be higher for minority groups; fairness, conversely, has been shown to disproportionally compromise the privacy of members of such groups. Most work in this area has been restricted to computer vision and risk assessment. In this paper, we evaluate the impact of differential privacy on fairness across four tasks, focusing on how attempts to mitigate privacy violations and between-group performance differences interact: Does privacy inhibit attempts to ensure fairness? To this end, we train $(\varepsilon,\delta)$-differentially private models with empirical risk minimization and group distributionally robust training objectives. Consistent with previous findings, we find that differential privacy increases between-group performance differences in the baseline setting; but more interestingly, differential privacy reduces between-group performance differences in the robust setting. We explain this by reinterpreting differential privacy as regularization.
Abstract:In conversation, we often ask one-word questions such as `Why?' or `Who?'. Such questions are typically easy for humans to answer, but can be hard for computers, because their resolution requires retrieving both the right semantic frames and the right arguments from context. This paper introduces the novel ellipsis resolution task of resolving such one-word questions, referred to as sluices in linguistics. We present a crowd-sourced dataset containing annotations of sluices from over 4,000 dialogues collected from conversational QA datasets, as well as a series of strong baseline architectures.
Abstract:Task oriented dialogue systems rely heavily on specialized dialogue state tracking (DST) modules for dynamically predicting user intent throughout the conversation. State-of-the-art DST models are typically trained in a supervised manner from manual annotations at the turn level. However, these annotations are costly to obtain, which makes it difficult to create accurate dialogue systems for new domains. To address these limitations, we propose a method, based on reinforcement learning, for transferring DST models to new domains without turn-level supervision. Across several domains, our experiments show that this method quickly adapts off-the-shelf models to new domains and performs on par with models trained with turn-level supervision. We also show our method can improve models trained using turn-level supervision by subsequent fine-tuning optimization toward dialog-level rewards.