Abstract:The channel estimation (CE) in wireless receivers is one of the most critical and computationally complex signal processing operations. Recently, various works have shown that the deep learning (DL) based CE outperforms conventional minimum mean square error (MMSE) based CE, and it is hardware-friendly. However, DL-based CE has higher complexity and latency than popularly used least square (LS) based CE. In this work, we propose a novel low complexity high-speed Deep Neural Network-Augmented Least Square (LC-LSDNN) algorithm for IEEE 802.11p wireless physical layer and efficiently implement it on Zynq system on chip (ZSoC). The novelty of the LC-LSDNN is to use different DNNs for real and imaginary values of received complex symbols. This helps reduce the size of DL by 59% and optimize the critical path, allowing it to operate at 60% higher clock frequency. We also explore three different architectures for MMSE-based CE. We show that LC-LSDNN significantly outperforms MMSE and state-of-the-art DL-based CE for a wide range of signal-to-noise ratios (SNR) and different wireless channels. Also, it is computationally efficient, with around 50% lower resources than existing DL-based CE.
Abstract:The purpose of this study is to develop an automated algorithm for thoracic vertebral segmentation on chest radiography using deep learning. 124 de-identified lateral chest radiographs on unique patients were obtained. Segmentations of visible vertebrae were manually performed by a medical student and verified by a board-certified radiologist. 74 images were used for training, 10 for validation, and 40 were held out for testing. A U-Net deep convolutional neural network was employed for segmentation, using the sum of dice coefficient and binary cross-entropy as the loss function. On the test set, the algorithm demonstrated an average dice coefficient value of 90.5 and an average intersection-over-union (IoU) of 81.75. Deep learning demonstrates promise in the segmentation of vertebrae on lateral chest radiography.