Abstract:We introduce time-varying extremum graph (TVEG), a topological structure to support visualization and analysis of a time-varying scalar field. The extremum graph is a substructure of the Morse-Smale complex. It captures the adjacency relationship between cells in the Morse decomposition of a scalar field. We define the TVEG as a time-varying extension of the extremum graph and demonstrate how it captures salient feature tracks within a dynamic scalar field. We formulate the construction of the TVEG as an optimization problem and describe an algorithm for computing the graph. We also demonstrate the capabilities of \TVEG towards identification and exploration of topological events such as deletion, generation, split, and merge within a dynamic scalar field via comprehensive case studies including a viscous fingers and a 3D von K\'arm\'an vortex street dataset.
Abstract:Computing an optimal cycle in a given homology class, also referred to as the homology localization problem, is known to be an NP-hard problem in general. Furthermore, there is currently no known optimality criterion that localizes classes geometrically and admits a stability property under the setting of persistent homology. We present a geometric optimization of the cycles that is computable in polynomial time and is stable in an approximate sense. Tailoring our search criterion to different settings, we obtain various optimization problems like optimal homologous cycle, minimum homology basis, and minimum persistent homology basis. In practice, the (trivial) exact algorithm is computationally expensive despite having a worst case polynomial runtime. Therefore, we design approximation algorithms for the above problems and study their performance experimentally. These algorithms have reasonable runtimes for moderate sized datasets and the cycles computed by these algorithms are consistently of high quality as demonstrated via experiments on multiple datasets.