Abstract:Oceanographers rely on visual analysis to interpret model simulations, identify events and phenomena, and track dynamic ocean processes. The ever increasing resolution and complexity of ocean data due to its dynamic nature and multivariate relationships demands a scalable and adaptable visualization tool for interactive exploration. We introduce pyParaOcean, a scalable and interactive visualization system designed specifically for ocean data analysis. pyParaOcean offers specialized modules for common oceanographic analysis tasks, including eddy identification and salinity movement tracking. These modules seamlessly integrate with ParaView as filters, ensuring a user-friendly and easy-to-use system while leveraging the parallelization capabilities of ParaView and a plethora of inbuilt general-purpose visualization functionalities. The creation of an auxiliary dataset stored as a Cinema database helps address I/O and network bandwidth bottlenecks while supporting the generation of quick overview visualizations. We present a case study on the Bay of Bengal (BoB) to demonstrate the utility of the system and scaling studies to evaluate the efficiency of the system.
Abstract:In this work, a highly customizable and scalable vision based system for automation of mechanical assembly lines is described. The proposed system calculates the features that are required to classify and identify the different kinds of bolts that are used in the assembly line. The system describes a novel method of calculating the pitch of the bolt in addition to bolt identification and calculating the dimensions of the bolts. This identification and classification system is extremely lightweight and can be run on bare minimum hardware. The system is very fast in the order of milliseconds, hence the system can be used successfully even if the components are steadily moving on a conveyor. The results show that our system can correctly identify the parts in our dataset with 98% accuracy using the calculated features.