Abstract:We introduce time-varying extremum graph (TVEG), a topological structure to support visualization and analysis of a time-varying scalar field. The extremum graph is a substructure of the Morse-Smale complex. It captures the adjacency relationship between cells in the Morse decomposition of a scalar field. We define the TVEG as a time-varying extension of the extremum graph and demonstrate how it captures salient feature tracks within a dynamic scalar field. We formulate the construction of the TVEG as an optimization problem and describe an algorithm for computing the graph. We also demonstrate the capabilities of \TVEG towards identification and exploration of topological events such as deletion, generation, split, and merge within a dynamic scalar field via comprehensive case studies including a viscous fingers and a 3D von K\'arm\'an vortex street dataset.
Abstract:Knowledge of shape geometry plays a pivotal role in many shape analysis applications. In this paper we introduce a local geometry-inclusive global representation of 3D shapes based on computation of the shortest quasi-geodesic paths between all possible pairs of points on the 3D shape manifold. In the proposed representation, the normal curvature along the quasi-geodesic paths between any two points on the shape surface is preserved. We employ the eigenspectrum of the proposed global representation to address the problems of determination of region-based correspondence between isometric shapes and characterization of self-symmetry in the absence of prior knowledge in the form of user-defined correspondence maps. We further utilize the commutative property of the resulting shape descriptor to extract stable regions between isometric shapes that differ from one another by a high degree of isometry transformation. We also propose various shape characterization metrics in terms of the eigenvector decomposition of the shape descriptor spectrum to quantify the correspondence and self-symmetry of 3D shapes. The performance of the proposed 3D shape descriptor is experimentally compared with the performance of other relevant state-of-the-art 3D shape descriptors.