Abstract:We investigate deep neural network performance in the textindependent speaker recognition task. We demonstrate that using angular softmax activation at the last classification layer of a classification neural network instead of a simple softmax activation allows to train a more generalized discriminative speaker embedding extractor. Cosine similarity is an effective metric for speaker verification in this embedding space. We also address the problem of choosing an architecture for the extractor. We found that deep networks with residual frame level connections outperform wide but relatively shallow architectures. This paper also proposes several improvements for previous DNN-based extractor systems to increase the speaker recognition accuracy. We show that the discriminatively trained similarity metric learning approach outperforms the standard LDA-PLDA method as an embedding backend. The results obtained on Speakers in the Wild and NIST SRE 2016 evaluation sets demonstrate robustness of the proposed systems when dealing with close to real-life conditions.
Abstract:This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.
Abstract:This paper presents the Speech Technology Center (STC) systems submitted to Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge 2015. In this work we investigate different acoustic feature spaces to determine reliable and robust countermeasures against spoofing attacks. In addition to the commonly used front-end MFCC features we explored features derived from phase spectrum and features based on applying the multiresolution wavelet transform. Similar to state-of-the-art ASV systems, we used the standard TV-JFA approach for probability modelling in spoofing detection systems. Experiments performed on the development and evaluation datasets of the Challenge demonstrate that the use of phase-related and wavelet-based features provides a substantial input into the efficiency of the resulting STC systems. In our research we also focused on the comparison of the linear (SVM) and nonlinear (DBN) classifiers.