Abstract:Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.
Abstract:This paper presents the Speech Technology Center (STC) systems submitted to Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge 2015. In this work we investigate different acoustic feature spaces to determine reliable and robust countermeasures against spoofing attacks. In addition to the commonly used front-end MFCC features we explored features derived from phase spectrum and features based on applying the multiresolution wavelet transform. Similar to state-of-the-art ASV systems, we used the standard TV-JFA approach for probability modelling in spoofing detection systems. Experiments performed on the development and evaluation datasets of the Challenge demonstrate that the use of phase-related and wavelet-based features provides a substantial input into the efficiency of the resulting STC systems. In our research we also focused on the comparison of the linear (SVM) and nonlinear (DBN) classifiers.