Abstract:The advancement of Large Language Models (LLM) has also resulted in an equivalent proliferation in its applications. Software design, being one, has gained tremendous benefits in using LLMs as an interface component that extends fixed user stories. However, inclusion of LLM-based AI agents in software design often poses unexpected challenges, especially in the estimation of development efforts. Through the example of UI-based user stories, we provide a comparison against traditional methods and propose a new way to enhance specifications of natural language-based questions that allows for the estimation of development effort by taking into account data sources, interfaces and algorithms.
Abstract:Conditional image synthesis from layout has recently attracted much interest. Previous approaches condition the generator on object locations as well as class labels but lack fine-grained control over the diverse appearance aspects of individual objects. Gaining control over the image generation process is fundamental to build practical applications with a user-friendly interface. In this paper, we propose a method for attribute controlled image synthesis from layout which allows to specify the appearance of individual objects without affecting the rest of the image. We extend a state-of-the-art approach for layout-to-image generation to additionally condition individual objects on attributes. We create and experiment on a synthetic, as well as the challenging Visual Genome dataset. Our qualitative and quantitative results show that our method can successfully control the fine-grained details of individual objects when modelling complex scenes with multiple objects.
Abstract:Growing amounts of online user data motivate the need for automated processing techniques. In case of user ratings, one interesting option is to use neural networks for learning to predict ratings given an item and a user. While training for prediction, such an approach at the same time learns to map each user to a vector, a so-called user embedding. Such embeddings can for example be valuable for estimating user similarity. However, there are various ways how item and user information can be combined in neural networks, and it is unclear how the way of combining affects the resulting embeddings. In this paper, we run an experiment on movie ratings data, where we analyze the effect on embedding quality caused by several fusion strategies in neural networks. For evaluating embedding quality, we propose a novel measure, Pair-Distance Correlation, which quantifies the condition that similar users should have similar embedding vectors. We find that the fusion strategy affects results in terms of both prediction performance and embedding quality. Surprisingly, we find that prediction performance not necessarily reflects embedding quality. This suggests that if embeddings are of interest, the common tendency to select models based on their prediction ability should be reconsidered.
Abstract:Subjective visual interpretation is a challenging yet important topic in computer vision. Many approaches reduce this problem to the prediction of adjective- or attribute-labels from images. However, most of these do not take attribute semantics into account, or only process the image in a holistic manner. Furthermore, there is a lack of relevant datasets with fine-grained subjective labels. In this paper, we propose the Focus-Aspect-Polarity model to structure the process of capturing subjectivity in image processing, and introduce a novel dataset following this way of modeling. We run experiments on this dataset to compare several deep learning methods and find that incorporating context information based on tensor multiplication in several cases outperforms the default way of information fusion (concatenation).