Abstract:Effective expression feature representations generated by a triplet-based deep metric learning are highly advantageous for facial expression recognition (FER). The performance of triplet-based deep metric learning is contingent upon identifying the best threshold for triplet loss. Threshold validation, however, is tough and challenging, as the ideal threshold changes among datasets and even across classes within the same dataset. In this paper, we present the multi-threshold deep metric learning technique, which not only avoids the difficult threshold validation but also vastly increases the capacity of triplet loss learning to construct expression feature representations. We find that each threshold of the triplet loss intrinsically determines a distinctive distribution of inter-class variations and corresponds, thus, to a unique expression feature representation. Therefore, rather than selecting a single optimal threshold from a valid threshold range, we thoroughly sample thresholds across the range, allowing the representation characteristics manifested by thresholds within the range to be fully extracted and leveraged for FER. To realize this approach, we partition the embedding layer of the deep metric learning network into a collection of slices and model training these embedding slices as an end-to-end multi-threshold deep metric learning problem. Each embedding slice corresponds to a sample threshold and is learned by enforcing the corresponding triplet loss, yielding a set of distinct expression features, one for each embedding slice. It makes the embedding layer, which is composed of a set of slices, a more informative and discriminative feature, hence enhancing the FER accuracy. Extensive evaluations demonstrate the superior performance of the proposed approach on both posed and spontaneous facial expression datasets.
Abstract:Deep supervised learning algorithms generally require large numbers of labeled examples to attain satisfactory performance. To avoid the expensive cost incurred by collecting and labeling too many examples, as a subset of unsupervised learning, self-supervised learning (SSL) was proposed to learn good features from many unlabeled examples without any human-annotated labels. SSL has recently become a hot research topic, and many related algorithms have been proposed. However, few comprehensive studies have explained the connections among different SSL variants and how they have evolved. In this paper, we attempt to provide a review of the various SSL methods from the perspectives of algorithms, theory, applications, three main trends, and open questions. First, the motivations of most SSL algorithms are introduced in detail, and their commonalities and differences are compared. Second, the theoretical issues associated with SSL are investigated. Third, typical applications of SSL in areas such as image processing and computer vision (CV), as well as natural language processing (NLP), are discussed. Finally, the three main trends of SSL and the open research questions are discussed. A collection of useful materials is available at https://github.com/guijiejie/SSL.