Abstract:Diffusion models have shown promising results in cross-modal generation tasks involving audio and music, such as text-to-sound and text-to-music generation. These text-controlled music generation models typically focus on generating music by capturing global musical attributes like genre and mood. However, music composition is a complex, multilayered task that often involves musical arrangement as an integral part of the process. This process involves composing each instrument to align with existing ones in terms of beat, dynamics, harmony, and melody, requiring greater precision and control over tracks than text prompts usually provide. In this work, we address these challenges by extending the MusicLDM, a latent diffusion model for music, into a multi-track generative model. By learning the joint probability of tracks sharing a context, our model is capable of generating music across several tracks that correspond well to each other, either conditionally or unconditionally. Additionally, our model is capable of arrangement generation, where the model can generate any subset of tracks given the others (e.g., generating a piano track complementing given bass and drum tracks). We compared our model with an existing multi-track generative model and demonstrated that our model achieves considerable improvements across objective metrics for both total and arrangement generation tasks.
Abstract:Foley sound generation, the art of creating audio for multimedia, has recently seen notable advancements through text-conditioned latent diffusion models. These systems use multimodal text-audio representation models, such as Contrastive Language-Audio Pretraining (CLAP), whose objective is to map corresponding audio and text prompts into a joint embedding space. AudioLDM, a text-to-audio model, was the winner of the DCASE2023 task 7 Foley sound synthesis challenge. The winning system fine-tuned the model for specific audio classes and applied a post-filtering method using CLAP similarity scores between output audio and input text at inference time, requiring the generation of extra samples, thus reducing data generation efficiency. We introduce a new loss term to enhance Foley sound generation in AudioLDM without post-filtering. This loss term uses a new module based on the CLAP mode-Latent CLAP encode-to align the latent diffusion output with real audio in a shared CLAP embedding space. Our experiments demonstrate that our method effectively reduces the Frechet Audio Distance (FAD) score of the generated audio and eliminates the need for post-filtering, thus enhancing generation efficiency.