Abstract:Hexapod robots are potentially suitable for carrying out tasks in cluttered environments since they are stable, compact, and light weight. They also have multi-joint legs and variable height bodies that make them good candidates for tasks such as stairs climbing and squeezing under objects in a typical home environment or an attic. Expanding on our previous work on joist climbing in attics, we train a legged hexapod equipped with a depth camera and visual inertial odometry (VIO) to perform three tasks: climbing stairs, avoiding obstacles, and squeezing under obstacles such as a table. Our policies are trained with simulation data only and can be deployed on lowcost hardware not requiring real-time joint state feedback. We train our model in a teacher-student model with 2 phases: In phase 1, we use reinforcement learning with access to privileged information such as height maps and joint feedback. In phase 2, we use supervised learning to distill the model into one with access to only onboard observations, consisting of egocentric depth images and robot pose captured by a tracking VIO camera. By manipulating available privileged information, constructing simulation terrains, and refining reward functions during phase 1 training, we are able to train the robots with skills that are robust in non-ideal physical environments. We demonstrate successful sim-to-real transfer and achieve high success rates across all three tasks in physical experiments.
Abstract:The AlphaGarden is an automated testbed for indoor polyculture farming which combines a first-order plant simulator, a gantry robot, a seed planting algorithm, plant phenotyping and tracking algorithms, irrigation sensors and algorithms, and custom pruning tools and algorithms. In this paper, we systematically compare the performance of the AlphaGarden to professional horticulturalists on the staff of the UC Berkeley Oxford Tract Greenhouse. The humans and the machine tend side-by-side polyculture gardens with the same seed arrangement. We compare performance in terms of canopy coverage, plant diversity, and water consumption. Results from two 60-day cycles suggest that the automated AlphaGarden performs comparably to professional horticulturalists in terms of coverage and diversity, and reduces water consumption by as much as 44%. Code, videos, and datasets are available at https://sites.google.com/berkeley.edu/systematiccomparison.