MEDIALAB, CIS
Abstract:Studying misinformation and how to deal with unhealthy behaviours within online discussions has recently become an important field of research within social studies. With the rapid development of social media, and the increasing amount of available information and sources, rigorous manual analysis of such discourses has become unfeasible. Many approaches tackle the issue by studying the semantic and syntactic properties of discussions following a supervised approach, for example using natural language processing on a dataset labeled for abusive, fake or bot-generated content. Solutions based on the existence of a ground truth are limited to those domains which may have ground truth. However, within the context of misinformation, it may be difficult or even impossible to assign labels to instances. In this context, we consider the use of temporal dynamic patterns as an indicator of discussion health. Working in a domain for which ground truth was unavailable at the time (early COVID-19 pandemic discussions) we explore the characterization of discussions based on the the volume and time of contributions. First we explore the types of discussions in an unsupervised manner, and then characterize these types using the concept of ephemerality, which we formalize. In the end, we discuss the potential use of our ephemerality definition for labeling online discourses based on how desirable, healthy and constructive they are.
Abstract:We propose a novel framework for predicting the factuality of reporting of news media outlets by studying the user attention cycles in their YouTube channels. In particular, we design a rich set of features derived from the temporal evolution of the number of views, likes, dislikes, and comments for a video, which we then aggregate to the channel level. We develop and release a dataset for the task, containing observations of user attention on YouTube channels for 489 news media. Our experiments demonstrate both complementarity and sizable improvements over state-of-the-art textual representations.
Abstract:Collaborative content creation inevitably reaches situations where different points of view lead to conflict. We focus on Wikipedia, the free encyclopedia anyone may edit, where disputes about content in controversial articles often reflect larger societal debates. While Wikipedia has a public edit history and discussion section for every article, the substance of these sections is difficult to phantom for Wikipedia users interested in the development of an article and in locating which topics were most controversial. In this paper we present Contropedia, a tool that augments Wikipedia articles and gives insight into the development of controversial topics. Contropedia uses an efficient language agnostic measure based on the edit history that focuses on wiki links to easily identify which topics within a Wikipedia article have been most controversial and when.