Abstract:Driven by swift progress in hardware capabilities, quantum machine learning has emerged as a research area of interest. Recently, quantum image generation has produced promising results. However, prior quantum image generation techniques rely on classical neural networks, limiting their quantum potential and image quality. To overcome this, we introduce OrganiQ, the first quantum GAN capable of producing high-quality images without using classical neural networks.
Abstract:As quantum computing architecture matures, it is important to investigate new technologies that lend unique advantages. In this work, we propose, Qompose, a neutral atom quantum computing framework for efficiently composing quantum circuits on 2-D topologies of neutral atoms. Qompose selects an efficient topology for any given circuit in order to optimize for length of execution through efficient parallelism and for overall fidelity. our extensive evaluation demonstrates the Qompose is effective for a large collection of randomly-generated quantum circuits and a range of real-world benchmarks including VQE, ISING, and QAOA.
Abstract:Quantum computing has shown theoretical promise of speedup in several machine learning tasks, including generative tasks using generative adversarial networks (GANs). While quantum computers have been implemented with different types of technologies, recently, analog Rydberg atom quantum computers have been demonstrated to have desirable properties such as reconfigurable qubit (quantum bit) positions and multi-qubit operations. To leverage the properties of this technology, we propose ReCon, the first work to implement quantum GANs on analog Rydberg atom quantum computers. Our evaluation using simulations and real-computer executions shows 33% better quality (measured using Frechet Inception Distance (FID)) in generated images than the state-of-the-art technique implemented on superconducting-qubit technology.
Abstract:Exploration into quantum machine learning has grown tremendously in recent years due to the ability of quantum computers to speed up classical programs. However, these efforts have yet to solve unsupervised similarity detection tasks due to the challenge of porting them to run on quantum computers. To overcome this challenge, we propose SLIQ, the first open-sourced work for resource-efficient quantum similarity detection networks, built with practical and effective quantum learning and variance-reducing algorithms.
Abstract:Quantum computers can theoretically have significant acceleration over classical computers; but, the near-future era of quantum computing is limited due to small number of qubits that are also error prone. Quilt is a framework for performing multi-class classification task designed to work effectively on current error-prone quantum computers. Quilt is evaluated with real quantum machines as well as with projected noise levels as quantum machines become more noise-free. Quilt demonstrates up to 85% multi-class classification accuracy with the MNIST dataset on a five-qubit system.
Abstract:Quantum machine learning and vision have come to the fore recently, with hardware advances enabling rapid advancement in the capabilities of quantum machines. Recently, quantum image generation has been explored with many potential advantages over non-quantum techniques; however, previous techniques have suffered from poor quality and robustness. To address these problems, we introduce, MosaiQ, a high-quality quantum image generation GAN framework that can be executed on today's Near-term Intermediate Scale Quantum (NISQ) computers.
Abstract:Deep learning model inference is a key service in many businesses and scientific discovery processes. This paper introduces RIBBON, a novel deep learning inference serving system that meets two competing objectives: quality-of-service (QoS) target and cost-effectiveness. The key idea behind RIBBON is to intelligently employ a diverse set of cloud computing instances (heterogeneous instances) to meet the QoS target and maximize cost savings. RIBBON devises a Bayesian Optimization-driven strategy that helps users build the optimal set of heterogeneous instances for their model inference service needs on cloud computing platforms -- and, RIBBON demonstrates its superiority over existing approaches of inference serving systems using homogeneous instance pools. RIBBON saves up to 16% of the inference service cost for different learning models including emerging deep learning recommender system models and drug-discovery enabling models.