Abstract:Repository-level code completion remains a challenging task for existing code large language models (code LLMs) due to their limited understanding of repository-specific context and domain knowledge. While retrieval-augmented generation (RAG) approaches have shown promise by retrieving relevant code snippets as cross-file context, they suffer from two fundamental problems: misalignment between the query and the target code in the retrieval process, and the inability of existing retrieval methods to effectively utilize the inference information. To address these challenges, we propose AlignCoder, a repository-level code completion framework that introduces a query enhancement mechanism and a reinforcement learning based retriever training method. Our approach generates multiple candidate completions to construct an enhanced query that bridges the semantic gap between the initial query and the target code. Additionally, we employ reinforcement learning to train an AlignRetriever that learns to leverage inference information in the enhanced query for more accurate retrieval. We evaluate AlignCoder on two widely-used benchmarks (CrossCodeEval and RepoEval) across five backbone code LLMs, demonstrating an 18.1% improvement in EM score compared to baselines on the CrossCodeEval benchmark. The results show that our framework achieves superior performance and exhibits high generalizability across various code LLMs and programming languages.
Abstract:Large language models (LLMs) have brought a paradigm shift to the field of code generation, offering the potential to enhance the software development process. However, previous research mainly focuses on the accuracy of code generation, while coding style differences between LLMs and human developers remain under-explored. In this paper, we empirically analyze the differences in coding style between the code generated by mainstream Code LLMs and the code written by human developers, and summarize coding style inconsistency taxonomy. Specifically, we first summarize the types of coding style inconsistencies by manually analyzing a large number of generation results. We then compare the code generated by Code LLMs with the code written by human programmers in terms of readability, conciseness, and robustness. The results reveal that LLMs and developers have different coding styles. Additionally, we study the possible causes of these inconsistencies and provide some solutions to alleviate the problem.