Abstract:Reconstructing an object from photos and placing it virtually in a new environment goes beyond the standard novel view synthesis task as the appearance of the object has to not only adapt to the novel viewpoint but also to the new lighting conditions and yet evaluations of inverse rendering methods rely on novel view synthesis data or simplistic synthetic datasets for quantitative analysis. This work presents a real-world dataset for measuring the reconstruction and rendering of objects for relighting. To this end, we capture the environment lighting and ground truth images of the same objects in multiple environments allowing to reconstruct the objects from images taken in one environment and quantify the quality of the rendered views for the unseen lighting environments. Further, we introduce a simple baseline composed of off-the-shelf methods and test several state-of-the-art methods on the relighting task and show that novel view synthesis is not a reliable proxy to measure performance. Code and dataset are available at https://github.com/isl-org/objects-with-lighting .
Abstract:Our world is full of identical objects (\emphe.g., cans of coke, cars of same model). These duplicates, when seen together, provide additional and strong cues for us to effectively reason about 3D. Inspired by this observation, we introduce Structure from Duplicates (SfD), a novel inverse graphics framework that reconstructs geometry, material, and illumination from a single image containing multiple identical objects. SfD begins by identifying multiple instances of an object within an image, and then jointly estimates the 6DoF pose for all instances.An inverse graphics pipeline is subsequently employed to jointly reason about the shape, material of the object, and the environment light, while adhering to the shared geometry and material constraint across instances. Our primary contributions involve utilizing object duplicates as a robust prior for single-image inverse graphics and proposing an in-plane rotation-robust Structure from Motion (SfM) formulation for joint 6-DoF object pose estimation. By leveraging multi-view cues from a single image, SfD generates more realistic and detailed 3D reconstructions, significantly outperforming existing single image reconstruction models and multi-view reconstruction approaches with a similar or greater number of observations.