Abstract:Trilevel learning, also called trilevel optimization (TLO), has been recognized as a powerful modelling tool for hierarchical decision process and widely applied in many machine learning applications, such as robust neural architecture search, hyperparameter optimization, and domain adaptation. Tackling TLO problems has presented a great challenge due to their nested decision-making structure. In addition, existing works on TLO face the following key challenges: 1) they all focus on the non-distributed setting, which may lead to privacy breach; 2) they do not offer any non-asymptotic convergence analysis which characterizes how fast an algorithm converges. To address the aforementioned challenges, this paper proposes an asynchronous federated trilevel optimization method to solve TLO problems. The proposed method utilizes $\mu$-cuts to construct a hyper-polyhedral approximation for the TLO problem and solve it in an asynchronous manner. We demonstrate that the proposed $\mu$-cuts are applicable to not only convex functions but also a wide range of non-convex functions that meet the $\mu$-weakly convex assumption. Furthermore, we theoretically analyze the non-asymptotic convergence rate for the proposed method by showing its iteration complexity to obtain $\epsilon$-stationary point is upper bounded by $\mathcal{O}(\frac{1}{\epsilon^2})$. Extensive experiments on real-world datasets have been conducted to elucidate the superiority of the proposed method, e.g., it has a faster convergence rate with a maximum acceleration of approximately 80$\%$.
Abstract:Bilevel optimization plays an essential role in many machine learning tasks, ranging from hyperparameter optimization to meta-learning. Existing studies on bilevel optimization, however, focus on either centralized or synchronous distributed setting. The centralized bilevel optimization approaches require collecting massive amount of data to a single server, which inevitably incur significant communication expenses and may give rise to data privacy risks. Synchronous distributed bilevel optimization algorithms, on the other hand, often face the straggler problem and will immediately stop working if a few workers fail to respond. As a remedy, we propose Asynchronous Distributed Bilevel Optimization (ADBO) algorithm. The proposed ADBO can tackle bilevel optimization problems with both nonconvex upper-level and lower-level objective functions, and its convergence is theoretically guaranteed. Furthermore, it is revealed through theoretic analysis that the iteration complexity of ADBO to obtain the $\epsilon$-stationary point is upper bounded by $\mathcal{O}(\frac{1}{{{\epsilon ^2}}})$. Thorough empirical studies on public datasets have been conducted to elucidate the effectiveness and efficiency of the proposed ADBO.
Abstract:Recently, transformer-based language models such as BERT have shown tremendous performance improvement for a range of natural language processing tasks. However, these language models usually are computation expensive and memory intensive during inference. As a result, it is difficult to deploy them on resource-restricted devices. To improve the inference performance, as well as reduce the model size while maintaining the model accuracy, we propose a novel quantization method named KDLSQ-BERT that combines knowledge distillation (KD) with learned step size quantization (LSQ) for language model quantization. The main idea of our method is that the KD technique is leveraged to transfer the knowledge from a "teacher" model to a "student" model when exploiting LSQ to quantize that "student" model during the quantization training process. Extensive experiment results on GLUE benchmark and SQuAD demonstrate that our proposed KDLSQ-BERT not only performs effectively when doing different bit (e.g. 2-bit $\sim$ 8-bit) quantization, but also outperforms the existing BERT quantization methods, and even achieves comparable performance as the full-precision base-line model while obtaining 14.9x compression ratio. Our code will be public available.