Abstract:This paper describes a machine translation test set of documents from the auditing domain and its use as one of the "test suites" in the WMT19 News Translation Task for translation directions involving Czech, English and German. Our evaluation suggests that current MT systems optimized for the general news domain can perform quite well even in the particular domain of audit reports. The detailed manual evaluation however indicates that deep factual knowledge of the domain is necessary. For the naked eye of a non-expert, translations by many systems seem almost perfect and automatic MT evaluation with one reference is practically useless for considering these details. Furthermore, we show on a sample document from the domain of agreements that even the best systems completely fail in preserving the semantics of the agreement, namely the identity of the parties.
Abstract:We present a test corpus of audio recordings and transcriptions of presentations of students' enterprises together with their slides and web-pages. The corpus is intended for evaluation of automatic speech recognition (ASR) systems, especially in conditions where the prior availability of in-domain vocabulary and named entities is benefitable. The corpus consists of 39 presentations in English, each up to 90 seconds long. The speakers are high school students from European countries with English as their second language. We benchmark three baseline ASR systems on the corpus and show their imperfection.