Abstract:Developing robust and effective artificial intelligence (AI) models in medicine requires access to large amounts of patient data. The use of AI models solely trained on large multi-institutional datasets can help with this, yet the imperative to ensure data privacy remains, particularly as membership inference risks breaching patient confidentiality. As a proposed remedy, we advocate for the integration of differential privacy (DP). We specifically investigate the performance of models trained with DP as compared to models trained without DP on data from institutions that the model had not seen during its training (i.e., external validation) - the situation that is reflective of the clinical use of AI models. By leveraging more than 590,000 chest radiographs from five institutions, we evaluated the efficacy of DP-enhanced domain transfer (DP-DT) in diagnosing cardiomegaly, pleural effusion, pneumonia, atelectasis, and in identifying healthy subjects. We juxtaposed DP-DT with non-DP-DT and examined diagnostic accuracy and demographic fairness using the area under the receiver operating characteristic curve (AUC) as the main metric, as well as accuracy, sensitivity, and specificity. Our results show that DP-DT, even with exceptionally high privacy levels (epsilon around 1), performs comparably to non-DP-DT (P>0.119 across all domains). Furthermore, DP-DT led to marginal AUC differences - less than 1% - for nearly all subgroups, relative to non-DP-DT. Despite consistent evidence suggesting that DP models induce significant performance degradation for on-domain applications, we show that off-domain performance is almost not affected. Therefore, we ardently advocate for the adoption of DP in training diagnostic medical AI models, given its minimal impact on performance.
Abstract:Accurate and automatic segmentation of fibroglandular tissue in breast MRI screening is essential for the quantification of breast density and background parenchymal enhancement. In this retrospective study, we developed and evaluated a transformer-based neural network for breast segmentation (TraBS) in multi-institutional MRI data, and compared its performance to the well established convolutional neural network nnUNet. TraBS and nnUNet were trained and tested on 200 internal and 40 external breast MRI examinations using manual segmentations generated by experienced human readers. Segmentation performance was assessed in terms of the Dice score and the average symmetric surface distance. The Dice score for nnUNet was lower than for TraBS on the internal testset (0.909$\pm$0.069 versus 0.916$\pm$0.067, P<0.001) and on the external testset (0.824$\pm$0.144 versus 0.864$\pm$0.081, P=0.004). Moreover, the average symmetric surface distance was higher (=worse) for nnUNet than for TraBS on the internal (0.657$\pm$2.856 versus 0.548$\pm$2.195, P=0.001) and on the external testset (0.727$\pm$0.620 versus 0.584$\pm$0.413, P=0.03). Our study demonstrates that transformer-based networks improve the quality of fibroglandular tissue segmentation in breast MRI compared to convolutional-based models like nnUNet. These findings might help to enhance the accuracy of breast density and parenchymal enhancement quantification in breast MRI screening.