Abstract:As blockchain technology rapidly evolves, the demand for enhanced efficiency, security, and scalability grows.Transformer models, as powerful deep learning architectures,have shown unprecedented potential in addressing various blockchain challenges. However, a systematic review of Transformer applications in blockchain is lacking. This paper aims to fill this research gap by surveying over 200 relevant papers, comprehensively reviewing practical cases and research progress of Transformers in blockchain applications. Our survey covers key areas including anomaly detection, smart contract security analysis, cryptocurrency prediction and trend analysis, and code summary generation. To clearly articulate the advancements of Transformers across various blockchain domains, we adopt a domain-oriented classification system, organizing and introducing representative methods based on major challenges in current blockchain research. For each research domain,we first introduce its background and objectives, then review previous representative methods and analyze their limitations,and finally introduce the advancements brought by Transformer models. Furthermore, we explore the challenges of utilizing Transformer, such as data privacy, model complexity, and real-time processing requirements. Finally, this article proposes future research directions, emphasizing the importance of exploring the Transformer architecture in depth to adapt it to specific blockchain applications, and discusses its potential role in promoting the development of blockchain technology. This review aims to provide new perspectives and a research foundation for the integrated development of blockchain technology and machine learning, supporting further innovation and application expansion of blockchain technology.
Abstract:In recent years, research on adversarial attacks has become a hot spot. Although current literature on the transfer-based adversarial attack has achieved promising results for improving the transferability to unseen black-box models, it still leaves a long way to go. Inspired by the idea of meta-learning, this paper proposes a novel architecture called Meta Gradient Adversarial Attack (MGAA), which is plug-and-play and can be integrated with any existing gradient-based attack method for improving the cross-model transferability. Specifically, we randomly sample multiple models from a model zoo to compose different tasks and iteratively simulate a white-box attack and a black-box attack in each task. By narrowing the gap between the gradient directions in white-box and black-box attacks, the transferability of adversarial examples on the black-box setting can be improved. Extensive experiments on the CIFAR10 and ImageNet datasets show that our architecture outperforms the state-of-the-art methods for both black-box and white-box attack settings.
Abstract:Auxiliary Classifier GANs (AC-GANs) are widely used conditional generative models and are capable of generating high-quality images. Previous work has pointed out that AC-GAN learns a biased distribution. To remedy this, Twin Auxiliary Classifier GAN (TAC-GAN) introduces a twin classifier to the min-max game. However, it has been reported that using a twin auxiliary classifier may cause instability in training. To this end, we propose an Unbiased Auxiliary GANs (UAC-GAN) that utilizes the Mutual Information Neural Estimator (MINE) to estimate the mutual information between the generated data distribution and labels. To further improve the performance, we also propose a novel projection-based statistics network architecture for MINE. Experimental results on three datasets, including Mixture of Gaussian (MoG), MNIST and CIFAR10 datasets, show that our UAC-GAN performs better than AC-GAN and TAC-GAN. Code can be found on the project website.