Abstract:Recent research shows that more data and larger models can provide more accurate solutions to natural language problems requiring reasoning. However, models can easily fail to provide solutions in unobserved complex input compositions due to not achieving the level of abstraction required for generalizability. To alleviate this issue, we propose training the language models with neuro-symbolic techniques that can exploit the logical rules of reasoning as constraints and provide additional supervision sources to the model. Training models to adhere to the regulations of reasoning pushes them to make more effective abstractions needed for generalizability and transfer learning. We focus on a challenging problem of spatial reasoning over text. Our results on various benchmarks using multiple language models confirm our hypothesis of effective domain transfer based on neuro-symbolic training.
Abstract:Compositional learning, mastering the ability to combine basic concepts and construct more intricate ones, is crucial for human cognition, especially in human language comprehension and visual perception. This notion is tightly connected to generalization over unobserved situations. Despite its integral role in intelligence, there is a lack of systematic theoretical and experimental research methodologies, making it difficult to analyze the compositional learning abilities of computational models. In this paper, we survey the literature on compositional learning of AI models and the connections made to cognitive studies. We identify abstract concepts of compositionality in cognitive and linguistic studies and connect these to the computational challenges faced by language and vision models in compositional reasoning. We overview the formal definitions, tasks, evaluation benchmarks, variety of computational models, and theoretical findings. We cover modern studies on large language models to provide a deeper understanding of the cutting-edge compositional capabilities exhibited by state-of-the-art AI models and pinpoint important directions for future research.
Abstract:Recent research has shown that integrating domain knowledge into deep learning architectures is effective -- it helps reduce the amount of required data, improves the accuracy of the models' decisions, and improves the interpretability of models. However, the research community is missing a convened benchmark for systematically evaluating knowledge integration methods. In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision. In all cases, we model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints. We report the results of these models using a new set of extended evaluation criteria in addition to the task performances for a more in-depth analysis. This effort provides a framework for a more comprehensive and systematic comparison of constraint integration techniques and for identifying related research challenges. It will facilitate further research for alleviating some problems of state-of-the-art neural models.