Abstract:This study explores the feasibility of adapting CSI-guided imaging across varied environments. Focusing on continuous model learning through continuous updates, we investigate CSI-Imager's adaptability in dynamically changing settings, specifically transitioning from an office to an industrial environment. Unlike traditional approaches that may require retraining for new environments, our experimental study aims to validate the potential of CSI-guided imaging to maintain accurate imaging performance through Continuous Learning (CL). By conducting experiments across different scenarios and settings, this work contributes to understanding the limitations and capabilities of existing CSI-guided imaging systems in adapting to new environmental contexts.
Abstract:In the wake of the burgeoning expansion of generative artificial intelligence (AI) services, the computational demands inherent to these technologies frequently necessitate cloud-powered computational offloading, particularly for resource-constrained mobile devices. These services commonly employ prompts to steer the generative process, and both the prompts and the resultant content, such as text and images, may harbor privacy-sensitive or confidential information, thereby elevating security and privacy risks. To mitigate these concerns, we introduce $\Lambda$-Split, a split computing framework to facilitate computational offloading while simultaneously fortifying data privacy against risks such as eavesdropping and unauthorized access. In $\Lambda$-Split, a generative model, usually a deep neural network (DNN), is partitioned into three sub-models and distributed across the user's local device and a cloud server: the input-side and output-side sub-models are allocated to the local, while the intermediate, computationally-intensive sub-model resides on the cloud server. This architecture ensures that only the hidden layer outputs are transmitted, thereby preventing the external transmission of privacy-sensitive raw input and output data. Given the black-box nature of DNNs, estimating the original input or output from intercepted hidden layer outputs poses a significant challenge for malicious eavesdroppers. Moreover, $\Lambda$-Split is orthogonal to traditional encryption-based security mechanisms, offering enhanced security when deployed in conjunction. We empirically validate the efficacy of the $\Lambda$-Split framework using Llama 2 and Stable Diffusion XL, representative large language and diffusion models developed by Meta and Stability AI, respectively. Our $\Lambda$-Split implementation is publicly accessible at https://github.com/nishio-laboratory/lambda_split.
Abstract:In decentralized federated learning (DFL), substantial traffic from frequent inter-node communication and non-independent and identically distributed (non-IID) data challenges high-accuracy model acquisition. We propose Tram-FL, a novel DFL method, which progressively refines a global model by transferring it sequentially amongst nodes, rather than by exchanging and aggregating local models. We also introduce a dynamic model routing algorithm for optimal route selection, aimed at enhancing model precision with minimal forwarding. Our experiments using MNIST, CIFAR-10, and IMDb datasets demonstrate that Tram-FL with the proposed routing delivers high model accuracy under non-IID conditions, outperforming baselines while reducing communication costs.
Abstract:Radio Frequency (RF) signal-based multimodal image inpainting has recently emerged as a promising paradigm to enhance the capability of distortion-free image restoration by integrating wireless and visual information from the identical physical environment and has potential applications in fields like security and surveillance systems. In this paper, we aim to implement an RF-based image inpainting system that enables image restoration in a complex environment while maintaining high robustness and accuracy. This requires accurately converting RF signals into meaningful visual information and overcoming the challenges of RF signals in complex environments, such as multipath interference, signal attenuation, and noise. To tackle this problem, we propose Trans-Inpainter, a novel image inpainting method that utilizes the Channel State Information (CSI) of WiFi signals in combination with transformer networks to generate high-quality reconstructed images. This approach is the first to use CSI for image inpainting, which allows for extracting visual information from WiFi signals to fill in missing regions in images. To further improve Trans-Inpainter's performance, we investigate the impact of variations in CSI data on RF-based imaging ability, i.e., analyzing how the location of the CSI sensors, the combination of CSI from different sensors, and changes in temporal or frequency dimensions of CSI matrix affect the imaging quality. We compare the performance of Trans-Inpainter with RF-Inpainter, the state-of-the-art technology for RF-based multimodal image inpainting, under more realistic experimental scenarios, and with single-modality image inpainting models when only RF or image data is available, respectively. The results show that Trans-Inpainter outperforms other baseline methods in all cases.
Abstract:This study demonstrates the feasibility of point cloud-based proactive link quality prediction for millimeter-wave (mmWave) communications. Image-based methods to quantitatively and deterministically predict future received signal strength using machine learning from time series of depth images to mitigate the human body line-of-sight (LOS) path blockage in mmWave communications have been proposed. However, image-based methods have been limited in applicable environments because camera images may contain private information. Thus, this study demonstrates the feasibility of using point clouds obtained from light detection and ranging (LiDAR) for the mmWave link quality prediction. Point clouds represent three-dimensional (3D) spaces as a set of points and are sparser and less likely to contain sensitive information than camera images. Additionally, point clouds provide 3D position and motion information, which is necessary for understanding the radio propagation environment involving pedestrians. This study designs the mmWave link quality prediction method and conducts two experimental evaluations using different types of point clouds obtained from LiDAR and depth cameras, as well as different numerical indicators of link quality, received signal strength and throughput. Based on these experiments, our proposed method can predict future large attenuation of mmWave link quality due to LOS blockage by human bodies, therefore our point cloud-based method can be an alternative to image-based methods.
Abstract:This paper proposes a neural architecture search (NAS) method for split computing. Split computing is an emerging machine-learning inference technique that addresses the privacy and latency challenges of deploying deep learning in IoT systems. In split computing, neural network models are separated and cooperatively processed using edge servers and IoT devices via networks. Thus, the architecture of the neural network model significantly impacts the communication payload size, model accuracy, and computational load. In this paper, we address the challenge of optimizing neural network architecture for split computing. To this end, we proposed NASC, which jointly explores optimal model architecture and a split point to achieve higher accuracy while meeting latency requirements (i.e., smaller total latency of computation and communication than a certain threshold). NASC employs a one-shot NAS that does not require repeating model training for a computationally efficient architecture search. Our performance evaluation using hardware (HW)-NAS-Bench of benchmark data demonstrates that the proposed NASC can improve the ``communication latency and model accuracy" trade-off, i.e., reduce the latency by approximately 40-60% from the baseline, with slight accuracy degradation.
Abstract:Recompositing channel state information (CSI) from the beamforming feedback matrix (BFM), which is a compressed version of CSI and can be captured because of its lack of encryption, is an alternative way of implementing firmware-agnostic WiFi sensing. In this study, we propose the use of camera images toward the accuracy enhancement of CSI recomposition from BFM. The key motivation for this vision-aided CSI recomposition is to draw a first-hand insight that the BFM does not fully involve spatial information to recomposite CSI and that this could be compensated by camera images. To leverage the camera images, we use multimodal deep learning, where the two modalities, i.e., images and BFMs, are integrated to recomposite the CSI. We conducted experiments using IEEE 802.11ac devices. The experimental results confirmed that the recomposition accuracy of the proposed multimodal framework is improved compared to the single-modal framework only using images or BFMs.
Abstract:This paper presents the watch-from-sky framework, where multiple unmanned aerial vehicles (UAVs) play four roles, i.e., sensing, data forwarding, computing, and patrolling, for predictive police surveillance. Our framework is promising for crime deterrence because UAVs are useful for collecting and distributing data and have high mobility. Our framework relies on machine learning (ML) technology for controlling and dispatching UAVs and predicting crimes. This paper compares the conceptual model of our framework against the literature. It also reports a simulation of UAV dispatching using reinforcement learning and distributed ML inference over a lossy UAV network.
Abstract:The distributed inference (DI) framework has gained traction as a technique for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy IoT networks. However, generally, there is a communication system-level trade-off between communication latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us to improve the trade-off between the communication latency and accuracy by efforts on ML techniques. Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to fine-tune the ML model by emulating the effect of unreliable communication links through the application of the dropout technique. This enables the DI system to obtain robustness against unreliable communication links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under lossy networks.
Abstract:With regard to the implementation of WiFi sensing agnostic according to the availability of channel state information (CSI), we investigate the possibility of estimating a CSI matrix based on its compressed version, which is known as beamforming feedback matrix (BFM). Being different from the CSI matrix that is processed and discarded in physical layer components, the BFM can be captured using a medium-access-layer frame-capturing technique because this is exchanged among an access point (AP) and stations (STAs) over the air. This indicates that WiFi sensing that leverages the BFM matrix is more practical to implement using the pre-installed APs. However, the ability of BFM-based sensing has been evaluated in a few tasks, and more general insights into its performance should be provided. To fill this gap, we propose a CSI estimation method based on BFM, approximating the estimation function with a machine learning model. In addition, to improve the estimation accuracy, we leverage the inter-subcarrier dependency using the BFMs at multiple subcarriers in orthogonal frequency division multiplexing transmissions. Our simulation evaluation reveals that the estimated CSI matches the ground-truth amplitude. Moreover, compared to CSI estimation at each individual subcarrier, the effect of the BFMs at multiple subcarriers on the CSI estimation accuracy is validated.