Abstract:Segment anything model (SAM), as the name suggests, is claimed to be capable of cutting out any object. SAM is a vision foundation model which demonstrates impressive zero-shot transfer performance with the guidance of a prompt. However, there is currently a lack of comprehensive evaluation of its robustness performance under various types of corruptions. Prior works show that SAM is biased towards texture (style) rather than shape, motivated by which we start by investigating SAM's robustness against style transfer, which is synthetic corruption. With the effect of corruptions interpreted as a style change, we further evaluate its robustness on 15 common corruptions with 5 severity levels for each real-world corruption. Beyond the corruptions, we further evaluate the SAM robustness on local occlusion and adversarial perturbations. Overall, this work provides a comprehensive empirical study on the robustness of the SAM under corruptions and beyond.
Abstract:Segment Anything Model (SAM) has attracted significant attention recently, due to its impressive performance on various downstream tasks in a zero-short manner. Computer vision (CV) area might follow the natural language processing (NLP) area to embark on a path from task-specific vision models toward foundation models. However, deep vision models are widely recognized as vulnerable to adversarial examples, which fool the model to make wrong predictions with imperceptible perturbation. Such vulnerability to adversarial attacks causes serious concerns when applying deep models to security-sensitive applications. Therefore, it is critical to know whether the vision foundation model SAM can also be fooled by adversarial attacks. To the best of our knowledge, our work is the first of its kind to conduct a comprehensive investigation on how to attack SAM with adversarial examples. With the basic attack goal set to mask removal, we investigate the adversarial robustness of SAM in the full white-box setting and transfer-based black-box settings. Beyond the basic goal of mask removal, we further investigate and find that it is possible to generate any desired mask by the adversarial attack.
Abstract:Diffusion models have become a new SOTA generative modeling method in various fields, for which there are multiple survey works that provide an overall survey. With the number of articles on diffusion models increasing exponentially in the past few years, there is an increasing need for surveys of diffusion models on specific fields. In this work, we are committed to conducting a survey on the graph diffusion models. Even though our focus is to cover the progress of diffusion models in graphs, we first briefly summarize how other generative modeling methods are used for graphs. After that, we introduce the mechanism of diffusion models in various forms, which facilitates the discussion on the graph diffusion models. The applications of graph diffusion models mainly fall into the category of AI-generated content (AIGC) in science, for which we mainly focus on how graph diffusion models are utilized for generating molecules and proteins but also cover other cases, including materials design. Moreover, we discuss the issue of evaluating diffusion models in the graph domain and the existing challenges.