Abstract:Despite the progress of learning-based methods for 6D object pose estimation, the trade-off between accuracy and scalability for novel objects still exists. Specifically, previous methods for novel objects do not make good use of the target object's 3D shape information since they focus on generalization by processing the shape indirectly, making them less effective. We present GenFlow, an approach that enables both accuracy and generalization to novel objects with the guidance of the target object's shape. Our method predicts optical flow between the rendered image and the observed image and refines the 6D pose iteratively. It boosts the performance by a constraint of the 3D shape and the generalizable geometric knowledge learned from an end-to-end differentiable system. We further improve our model by designing a cascade network architecture to exploit the multi-scale correlations and coarse-to-fine refinement. GenFlow ranked first on the unseen object pose estimation benchmarks in both the RGB and RGB-D cases. It also achieves performance competitive with existing state-of-the-art methods for the seen object pose estimation without any fine-tuning.
Abstract:Kinect skeleton tracker is able to achieve considerable human body tracking performance in convenient and a low-cost manner. However, The tracker often captures unnatural human poses such as discontinuous and vibrated motions when self-occlusions occur. A majority of approaches tackle this problem by using multiple Kinect sensors in a workspace. Combination of the measurements from different sensors is then conducted in Kalman filter framework or optimization problem is formulated for sensor fusion. However, these methods usually require heuristics to measure reliability of measurements observed from each Kinect sensor. In this paper, we developed a method to improve Kinect skeleton using single Kinect sensor, in which supervised learning technique was employed to correct unnatural tracking motions. Specifically, deep recurrent neural networks were used for improving joint positions and velocities of Kinect skeleton, and three methods were proposed to integrate the refined positions and velocities for further enhancement. Moreover, we suggested a novel measure to evaluate naturalness of captured motions. We evaluated the proposed approach by comparison with the ground truth obtained using a commercial optical maker-based motion capture system.